CVE-2022-21727 (GCVE-0-2022-21727)
Vulnerability from cvelistv5
Published
2022-02-03 11:07
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.841Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21727",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:29.809820Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:51.904Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:07:40.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
        }
      ],
      "source": {
        "advisory": "GHSA-c6fh-56w7-fvjw",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21727",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c6fh-56w7-fvjw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21727",
    "datePublished": "2022-02-03T11:07:40.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:51.904Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-21727\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-02-03T11:15:07.953\",\"lastModified\":\"2025-05-05T17:17:48.730\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de la inferencia de formas para \\\"Dequantize\\\" es vulnerable a una debilidad de desbordamiento de enteros. El argumento \\\"axis\\\" puede ser \\\"-1\\\" (el valor por defecto para el argumento opcional) o cualquier otro valor positivo como m\u00e1ximo el n\u00famero de dimensiones de la entrada. Desafortunadamente, el l\u00edmite superior no es comprobado y, dado que el c\u00f3digo calcula \\\"axis + 1\\\", un atacante puede desencadenar un desbordamiento de enteros. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\",\"baseScore\":7.6,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":4.7},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":8.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.8,\"impactScore\":5.9}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:L/Au:S/C:P/I:P/A:P\",\"baseScore\":6.5,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"LOW\",\"authentication\":\"SINGLE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":8.0,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-190\"}]},{\"source\":\"134c704f-9b21-4f2e-91b3-4a467353bcc0\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-190\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndIncluding\":\"2.5.2\",\"matchCriteriaId\":\"688150BF-477C-48FC-9AEF-A79AC57A6DDC\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.6.0\",\"versionEndIncluding\":\"2.6.2\",\"matchCriteriaId\":\"C9E69B60-8C97-47E2-9027-9598B8392E5D\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"2EDFAAB8-799C-4259-9102-944D4760DA2C\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]}]}}",
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\", \"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T02:53:35.841Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-21727\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"poc\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-04-25T15:47:29.809820Z\"}}}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-190\", \"description\": \"CWE-190 Integer Overflow or Wraparound\"}]}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-05-05T13:16:21.956Z\"}}], \"cna\": {\"title\": \"Integer overflow in Tensorflow\", \"source\": {\"advisory\": \"GHSA-c6fh-56w7-fvjw\", \"discovery\": \"UNKNOWN\"}, \"metrics\": [{\"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 7.6, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"HIGH\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\", \"integrityImpact\": \"LOW\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"confidentialityImpact\": \"LOW\"}}], \"affected\": [{\"vendor\": \"n/a\", \"product\": \"n/a\", \"versions\": [{\"status\": \"affected\", \"version\": \"n/a\"}]}], \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\", \"tags\": [\"x_refsource_CONFIRM\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\", \"tags\": [\"x_refsource_MISC\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\", \"tags\": [\"x_refsource_MISC\"]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"text\", \"description\": \"n/a\"}]}], \"providerMetadata\": {\"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\", \"dateUpdated\": \"2022-02-03T11:07:40.000Z\"}, \"x_legacyV4Record\": {\"impact\": {\"cvss\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 7.6, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"HIGH\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\", \"integrityImpact\": \"LOW\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"LOW\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"confidentialityImpact\": \"LOW\"}}, \"source\": {\"advisory\": \"GHSA-c6fh-56w7-fvjw\", \"discovery\": \"UNKNOWN\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"version\": {\"version_data\": [{\"version_value\": \"n/a\"}]}, \"product_name\": \"n/a\"}]}, \"vendor_name\": \"n/a\"}]}}, \"data_type\": \"CVE\", \"references\": {\"reference_data\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\", \"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw\", \"refsource\": \"CONFIRM\"}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\", \"name\": \"https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b\", \"refsource\": \"MISC\"}, {\"url\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\", \"name\": \"https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034\", \"refsource\": \"MISC\"}]}, \"data_format\": \"MITRE\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\"}]}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"n/a\"}]}]}, \"data_version\": \"4.0\", \"CVE_data_meta\": {\"ID\": \"CVE-2022-21727\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Integer overflow in Tensorflow\", \"ASSIGNER\": \"security-advisories@github.com\"}}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2022-21727\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2025-05-05T16:32:51.904Z\", \"dateReserved\": \"2021-11-16T00:00:00.000Z\", \"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"datePublished\": \"2022-02-03T11:07:40.000Z\", \"assignerShortName\": \"GitHub_M\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…