fkie_cve-2021-29521
Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Severity ?
2.5 (Low) - CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L
5.5 (Medium) - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
5.5 (Medium) - CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Summary
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
References
▶ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5 | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5 | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | |
---|---|---|---|
tensorflow | * | ||
tensorflow | * |
{ "configurations": [ { "nodes": [ { "cpeMatch": [ { "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9", "versionEndExcluding": "2.3.3", "versionStartIncluding": "2.3.0", "vulnerable": true }, { "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03", "versionEndExcluding": "2.4.2", "versionStartIncluding": "2.4.0", "vulnerable": true } ], "negate": false, "operator": "OR" } ] } ], "cveTags": [], "descriptions": [ { "lang": "en", "value": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3." }, { "lang": "es", "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Especificar una forma densa negativa en \"tf.raw_ops.SparseCountSparseOutput\" resulta en un error de segmentaci\u00f3n que es eliminado de la biblioteca est\u00e1ndar ya que los invariantes \"std::vector\" son rotos.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) asume que el primer elemento de la forma densa es siempre positivo y lo usa para inicializar un \"BatchedMap(T)\" (es decir, \"std::vector (absl::flat_hash_map(int64, T))\" (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) estructura de datos.\u0026#xa0;Si el tensor de \"shape\" presenta m\u00e1s de un elemento,\"num_batches\" es el primer valor en \"shape\".\u0026#xa0;Asegurarse de que el argumento \"dense_shape\" sea una forma de tensor v\u00e1lida (es decir, que todos los elementos no sean negativos) resuelve este problema.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2 y TensorFlow versi\u00f3n 2.3.3" } ], "id": "CVE-2021-29521", "lastModified": "2024-11-21T06:01:18.080", "metrics": { "cvssMetricV2": [ { "acInsufInfo": false, "baseSeverity": "LOW", "cvssData": { "accessComplexity": "LOW", "accessVector": "LOCAL", "authentication": "NONE", "availabilityImpact": "PARTIAL", "baseScore": 2.1, "confidentialityImpact": "NONE", "integrityImpact": "NONE", "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P", "version": "2.0" }, "exploitabilityScore": 3.9, "impactScore": 2.9, "obtainAllPrivilege": false, "obtainOtherPrivilege": false, "obtainUserPrivilege": false, "source": "nvd@nist.gov", "type": "Primary", "userInteractionRequired": false } ], "cvssMetricV31": [ { "cvssData": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 2.5, "baseSeverity": "LOW", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "version": "3.1" }, "exploitabilityScore": 1.0, "impactScore": 1.4, "source": "security-advisories@github.com", "type": "Secondary" }, { "cvssData": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 5.5, "baseSeverity": "MEDIUM", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H", "version": "3.1" }, "exploitabilityScore": 1.8, "impactScore": 3.6, "source": "nvd@nist.gov", "type": "Primary" } ] }, "published": "2021-05-14T20:15:11.567", "references": [ { "source": "security-advisories@github.com", "tags": [ "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5" }, { "source": "security-advisories@github.com", "tags": [ "Exploit", "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm" }, { "source": "af854a3a-2127-422b-91ae-364da2661108", "tags": [ "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5" }, { "source": "af854a3a-2127-422b-91ae-364da2661108", "tags": [ "Exploit", "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm" } ], "sourceIdentifier": "security-advisories@github.com", "vulnStatus": "Modified", "weaknesses": [ { "description": [ { "lang": "en", "value": "CWE-131" } ], "source": "security-advisories@github.com", "type": "Primary" } ] }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.
Loading…
Loading…