fkie_cve-2021-29521
Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Especificar una forma densa negativa en \"tf.raw_ops.SparseCountSparseOutput\" resulta en un error de segmentaci\u00f3n que es eliminado de la biblioteca est\u00e1ndar ya que los invariantes \"std::vector\" son rotos.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) asume que el primer elemento de la forma densa es siempre positivo y lo usa para inicializar un \"BatchedMap(T)\" (es decir, \"std::vector (absl::flat_hash_map(int64, T))\" (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) estructura de datos.\u0026#xa0;Si el tensor de \"shape\" presenta m\u00e1s de un elemento,\"num_batches\" es el primer valor en \"shape\".\u0026#xa0;Asegurarse de que el argumento \"dense_shape\" sea una forma de tensor v\u00e1lida (es decir, que todos los elementos no sean negativos) resuelve este problema.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2 y TensorFlow versi\u00f3n 2.3.3"
    }
  ],
  "id": "CVE-2021-29521",
  "lastModified": "2024-11-21T06:01:18.080",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.567",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…