fkie_cve-2021-47094
Vulnerability from fkie_nvd
Published
2024-03-04 18:15
Modified
2025-04-08 15:03
Severity ?
Summary
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/mmu: Don't advance iterator after restart due to yielding
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025b3 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do wh
---truncated---
References
Impacted products
Vendor | Product | Version | |
---|---|---|---|
linux | linux_kernel | * | |
linux | linux_kernel | 5.16 | |
linux | linux_kernel | 5.16 | |
linux | linux_kernel | 5.16 | |
linux | linux_kernel | 5.16 | |
linux | linux_kernel | 5.16 | |
linux | linux_kernel | 5.16 |
{ "configurations": [ { "nodes": [ { "cpeMatch": [ { "criteria": "cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*", "matchCriteriaId": "DA092E66-EAB8-40F2-9727-31C32749AE15", "versionEndExcluding": "5.15.12", "versionStartIncluding": "5.10", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc1:*:*:*:*:*:*", "matchCriteriaId": "357AA433-37E8-4323-BFB2-3038D6E4B414", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc2:*:*:*:*:*:*", "matchCriteriaId": "A73429BA-C2D9-4D0C-A75F-06A1CA8B3983", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc3:*:*:*:*:*:*", "matchCriteriaId": "F621B5E3-E99D-49E7-90B9-EC3B77C95383", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc4:*:*:*:*:*:*", "matchCriteriaId": "F7BFDCAA-1650-49AA-8462-407DD593F94F", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc5:*:*:*:*:*:*", "matchCriteriaId": "6EC9882F-866D-4ACB-8FBC-213D8D8436C8", "vulnerable": true }, { "criteria": "cpe:2.3:o:linux:linux_kernel:5.16:rc6:*:*:*:*:*:*", "matchCriteriaId": "8A0915FE-A4AA-4C94-B783-CF29D81E7E54", "vulnerable": true } ], "negate": false, "operator": "OR" } ] } ], "cveTags": [], "descriptions": [ { "lang": "en", "value": "In the Linux kernel, the following vulnerability has been resolved:\n\nKVM: x86/mmu: Don\u0027t advance iterator after restart due to yielding\n\nAfter dropping mmu_lock in the TDP MMU, restart the iterator during\ntdp_iter_next() and do not advance the iterator. Advancing the iterator\nresults in skipping the top-level SPTE and all its children, which is\nfatal if any of the skipped SPTEs were not visited before yielding.\n\nWhen zapping all SPTEs, i.e. when min_level == root_level, restarting the\niter and then invoking tdp_iter_next() is always fatal if the current gfn\nhas as a valid SPTE, as advancing the iterator results in try_step_side()\nskipping the current gfn, which wasn\u0027t visited before yielding.\n\nSprinkle WARNs on iter-\u003eyielded being true in various helpers that are\noften used in conjunction with yielding, and tag the helper with\n__must_check to reduce the probabily of improper usage.\n\nFailing to zap a top-level SPTE manifests in one of two ways. If a valid\nSPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),\nthe shadow page will be leaked and KVM will WARN accordingly.\n\n WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]\n RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]\n Call Trace:\n \u003cTASK\u003e\n kvm_arch_destroy_vm+0x130/0x1b0 [kvm]\n kvm_destroy_vm+0x162/0x2a0 [kvm]\n kvm_vcpu_release+0x34/0x60 [kvm]\n __fput+0x82/0x240\n task_work_run+0x5c/0x90\n do_exit+0x364/0xa10\n ? futex_unqueue+0x38/0x60\n do_group_exit+0x33/0xa0\n get_signal+0x155/0x850\n arch_do_signal_or_restart+0xed/0x750\n exit_to_user_mode_prepare+0xc5/0x120\n syscall_exit_to_user_mode+0x1d/0x40\n do_syscall_64+0x48/0xc0\n entry_SYSCALL_64_after_hwframe+0x44/0xae\n\nIf kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by\nkvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of\nmarking a struct page as dirty/accessed after it has been put back on the\nfree list. This directly triggers a WARN due to encountering a page with\npage_count() == 0, but it can also lead to data corruption and additional\nerrors in the kernel.\n\n WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171\n RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]\n Call Trace:\n \u003cTASK\u003e\n kvm_set_pfn_dirty+0x120/0x1d0 [kvm]\n __handle_changed_spte+0x92e/0xca0 [kvm]\n __handle_changed_spte+0x63c/0xca0 [kvm]\n __handle_changed_spte+0x63c/0xca0 [kvm]\n __handle_changed_spte+0x63c/0xca0 [kvm]\n zap_gfn_range+0x549/0x620 [kvm]\n kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]\n mmu_free_root_page+0x219/0x2c0 [kvm]\n kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]\n kvm_mmu_unload+0x1c/0xa0 [kvm]\n kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]\n kvm_put_kvm+0x3b1/0x8b0 [kvm]\n kvm_vcpu_release+0x4e/0x70 [kvm]\n __fput+0x1f7/0x8c0\n task_work_run+0xf8/0x1a0\n do_exit+0x97b/0x2230\n do_group_exit+0xda/0x2a0\n get_signal+0x3be/0x1e50\n arch_do_signal_or_restart+0x244/0x17f0\n exit_to_user_mode_prepare+0xcb/0x120\n syscall_exit_to_user_mode+0x1d/0x40\n do_syscall_64+0x4d/0x90\n entry_SYSCALL_64_after_hwframe+0x44/0xae\n\nNote, the underlying bug existed even before commit 1af4a96025b3 (\"KVM:\nx86/mmu: Yield in TDU MMU iter even if no SPTES changed\") moved calls to\ntdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still\nincorrectly advance past a top-level entry when yielding on a lower-level\nentry. But with respect to leaking shadow pages, the bug was introduced\nby yielding before processing the current gfn.\n\nAlternatively, tdp_mmu_iter_cond_resched() could simply fall through, or\ncallers could jump to their \"retry\" label. The downside of that approach\nis that tdp_mmu_iter_cond_resched() _must_ be called before anything else\nin the loop, and there\u0027s no easy way to enfornce that requirement.\n\nIdeally, KVM would handling the cond_resched() fully within the iterator\nmacro (the code is actually quite clean) and avoid this entire class of\nbugs, but that is extremely difficult do wh\n---truncated---" }, { "lang": "es", "value": " In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Don\u0027t advance iterator after restart due to yielding After dropping mmu_lock in the TDP MMU, restart the iterator during tdp_iter_next() and do not advance the iterator. Advancing the iterator results in skipping the top-level SPTE and all its children, which is fatal if any of the skipped SPTEs were not visited before yielding. When zapping all SPTEs, i.e. when min_level == root_level, restarting the iter and then invoking tdp_iter_next() is always fatal if the current gfn has as a valid SPTE, as advancing the iterator results in try_step_side() skipping the current gfn, which wasn\u0027t visited before yielding. Sprinkle WARNs on iter-\u0026gt;yielded being true in various helpers that are often used in conjunction with yielding, and tag the helper with __must_check to reduce the probabily of improper usage. Failing to zap a top-level SPTE manifests in one of two ways. If a valid SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(), the shadow page will be leaked and KVM will WARN accordingly. WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm] RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm] Call Trace: kvm_arch_destroy_vm+0x130/0x1b0 [kvm] kvm_destroy_vm+0x162/0x2a0 [kvm] kvm_vcpu_release+0x34/0x60 [kvm] __fput+0x82/0x240 task_work_run+0x5c/0x90 do_exit+0x364/0xa10 ? futex_unqueue+0x38/0x60 do_group_exit+0x33/0xa0 get_signal+0x155/0x850 arch_do_signal_or_restart+0xed/0x750 exit_to_user_mode_prepare+0xc5/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x48/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of marking a struct page as dirty/accessed after it has been put back on the free list. This directly triggers a WARN due to encountering a page with page_count() == 0, but it can also lead to data corruption and additional errors in the kernel. WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171 RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm] Call Trace: kvm_set_pfn_dirty+0x120/0x1d0 [kvm] __handle_changed_spte+0x92e/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] zap_gfn_range+0x549/0x620 [kvm] kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm] mmu_free_root_page+0x219/0x2c0 [kvm] kvm_mmu_free_roots+0x1b4/0x4e0 [kvm] kvm_mmu_unload+0x1c/0xa0 [kvm] kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm] kvm_put_kvm+0x3b1/0x8b0 [kvm] kvm_vcpu_release+0x4e/0x70 [kvm] __fput+0x1f7/0x8c0 task_work_run+0xf8/0x1a0 do_exit+0x97b/0x2230 do_group_exit+0xda/0x2a0 get_signal+0x3be/0x1e50 arch_do_signal_or_restart+0x244/0x17f0 exit_to_user_mode_prepare+0xcb/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x4d/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Note, the underlying bug existed even before commit 1af4a96025b3 (\"KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed\") moved calls to tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still incorrectly advance past a top-level entry when yielding on a lower-level entry. But with respect to leaking shadow pages, the bug was introduced by yielding before processing the current gfn. Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or callers could jump to their \"retry\" label. The downside of that approach is that tdp_mmu_iter_cond_resched() _must_ be called before anything else in the loop, and there\u0027s no easy way to enfornce that requirement. Ideally, KVM would handling the cond_resched() fully within the iterator macro (the code is actually quite clean) and avoid this entire class of bugs, but that is extremely difficult do wh" } ], "id": "CVE-2021-47094", "lastModified": "2025-04-08T15:03:23.360", "metrics": { "cvssMetricV31": [ { "cvssData": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 7.1, "baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H", "version": "3.1" }, "exploitabilityScore": 1.8, "impactScore": 5.2, "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0", "type": "Secondary" } ] }, "published": "2024-03-04T18:15:07.837", "references": [ { "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67", "tags": [ "Patch" ], "url": "https://git.kernel.org/stable/c/3a0f64de479cae75effb630a2e0a237ca0d0623c" }, { "source": "416baaa9-dc9f-4396-8d5f-8c081fb06d67", "tags": [ "Patch" ], "url": "https://git.kernel.org/stable/c/d884eefd75cc54887bc2e9e724207443525dfb2c" }, { "source": "af854a3a-2127-422b-91ae-364da2661108", "tags": [ "Patch" ], "url": "https://git.kernel.org/stable/c/3a0f64de479cae75effb630a2e0a237ca0d0623c" }, { "source": "af854a3a-2127-422b-91ae-364da2661108", "tags": [ "Patch" ], "url": "https://git.kernel.org/stable/c/d884eefd75cc54887bc2e9e724207443525dfb2c" } ], "sourceIdentifier": "416baaa9-dc9f-4396-8d5f-8c081fb06d67", "vulnStatus": "Analyzed", "weaknesses": [ { "description": [ { "lang": "en", "value": "NVD-CWE-noinfo" } ], "source": "nvd@nist.gov", "type": "Primary" } ] }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.
Loading…
Loading…