ghsa-h7ff-cfc9-wmmh
Vulnerability from github
Published
2022-09-16 22:15
Modified
2022-09-19 19:51
Summary
TensorFlow vulnerable to `CHECK` fail in `FakeQuantWithMinMaxVarsPerChannelGradient`
Details

Impact

When tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient receives input min or max of rank other than 1, it gives a CHECK fail that can trigger a denial of service attack. python import tensorflow as tf arg_0=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None) arg_1=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None) arg_2=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None) arg_3=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None) arg_4=8 arg_5=False arg_6=None tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient(gradients=arg_0, inputs=arg_1, min=arg_2, max=arg_3, num_bits=arg_4, narrow_range=arg_5, name=arg_6)

Patches

We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by - 刘力源, Information System & Security and Countermeasures Experiments Center, Beijing Institute of Technology - Neophytos Christou, Secure Systems Labs, Brown University

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-35990"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-617"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-09-16T22:15:21Z",
    "nvd_published_at": "2022-09-16T22:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nWhen `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack.\n```python\nimport tensorflow as tf\narg_0=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None)\narg_1=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None)\narg_2=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None)\narg_3=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None)\narg_4=8\narg_5=False\narg_6=None\ntf.quantization.fake_quant_with_min_max_vars_per_channel_gradient(gradients=arg_0, \n            inputs=arg_1, min=arg_2,  max=arg_3, num_bits=arg_4, \n            narrow_range=arg_5, name=arg_6)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [f3cf67ac5705f4f04721d15e485e192bb319feed](https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed).\n\nThe fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by \n - \u5218\u529b\u6e90, Information System \u0026 Security and Countermeasures Experiments Center, Beijing Institute of Technology\n - Neophytos Christou, Secure Systems Labs, Brown University\n",
  "id": "GHSA-h7ff-cfc9-wmmh",
  "modified": "2022-09-19T19:51:34Z",
  "published": "2022-09-16T22:15:21Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-35990"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": " TensorFlow vulnerable to `CHECK` fail in `FakeQuantWithMinMaxVarsPerChannelGradient`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…