gsd-2020-28975
Vulnerability from gsd
Modified
2023-12-13 01:22
Details
** DISPUTED ** svm_predict_values in svm.cpp in Libsvm v324, as used in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the _n_support array. NOTE: the scikit-learn vendor's position is that the behavior can only occur if the library's API is violated by an application that changes a private attribute.
Aliases
Aliases



{
  "GSD": {
    "alias": "CVE-2020-28975",
    "description": "** DISPUTED ** svm_predict_values in svm.cpp in Libsvm v324, as used in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the _n_support array. NOTE: the scikit-learn vendor\u0027s position is that the behavior can only occur if the library\u0027s API is violated by an application that changes a private attribute.",
    "id": "GSD-2020-28975",
    "references": [
      "https://www.suse.com/security/cve/CVE-2020-28975.html",
      "https://packetstormsecurity.com/files/cve/CVE-2020-28975"
    ]
  },
  "gsd": {
    "metadata": {
      "exploitCode": "unknown",
      "remediation": "unknown",
      "reportConfidence": "confirmed",
      "type": "vulnerability"
    },
    "osvSchema": {
      "aliases": [
        "CVE-2020-28975"
      ],
      "details": "** DISPUTED ** svm_predict_values in svm.cpp in Libsvm v324, as used in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the _n_support array. NOTE: the scikit-learn vendor\u0027s position is that the behavior can only occur if the library\u0027s API is violated by an application that changes a private attribute.",
      "id": "GSD-2020-28975",
      "modified": "2023-12-13T01:22:01.649341Z",
      "schema_version": "1.4.0"
    }
  },
  "namespaces": {
    "cve.org": {
      "CVE_data_meta": {
        "ASSIGNER": "cve@mitre.org",
        "ID": "CVE-2020-28975",
        "STATE": "PUBLIC"
      },
      "affects": {
        "vendor": {
          "vendor_data": [
            {
              "product": {
                "product_data": [
                  {
                    "product_name": "n/a",
                    "version": {
                      "version_data": [
                        {
                          "version_value": "n/a"
                        }
                      ]
                    }
                  }
                ]
              },
              "vendor_name": "n/a"
            }
          ]
        }
      },
      "data_format": "MITRE",
      "data_type": "CVE",
      "data_version": "4.0",
      "description": {
        "description_data": [
          {
            "lang": "eng",
            "value": "** DISPUTED ** svm_predict_values in svm.cpp in Libsvm v324, as used in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the _n_support array. NOTE: the scikit-learn vendor\u0027s position is that the behavior can only occur if the library\u0027s API is violated by an application that changes a private attribute."
          }
        ]
      },
      "problemtype": {
        "problemtype_data": [
          {
            "description": [
              {
                "lang": "eng",
                "value": "n/a"
              }
            ]
          }
        ]
      },
      "references": {
        "reference_data": [
          {
            "name": "https://github.com/scikit-learn/scikit-learn/issues/18891",
            "refsource": "MISC",
            "url": "https://github.com/scikit-learn/scikit-learn/issues/18891"
          },
          {
            "name": "https://github.com/cjlin1/libsvm/blob/9a3a9708926dec87d382c43b203f2ca19c2d56a0/svm.cpp#L2501",
            "refsource": "MISC",
            "url": "https://github.com/cjlin1/libsvm/blob/9a3a9708926dec87d382c43b203f2ca19c2d56a0/svm.cpp#L2501"
          },
          {
            "name": "20201130 scikit-learn 0.23.2 Local Denial of Service",
            "refsource": "FULLDISC",
            "url": "http://seclists.org/fulldisclosure/2020/Nov/44"
          },
          {
            "name": "http://packetstormsecurity.com/files/160281/SciKit-Learn-0.23.2-Denial-Of-Service.html",
            "refsource": "MISC",
            "url": "http://packetstormsecurity.com/files/160281/SciKit-Learn-0.23.2-Denial-Of-Service.html"
          },
          {
            "name": "https://github.com/scikit-learn/scikit-learn/commit/1bf13d567d3cd74854aa8343fd25b61dd768bb85",
            "refsource": "MISC",
            "url": "https://github.com/scikit-learn/scikit-learn/commit/1bf13d567d3cd74854aa8343fd25b61dd768bb85"
          },
          {
            "name": "GLSA-202301-03",
            "refsource": "GENTOO",
            "url": "https://security.gentoo.org/glsa/202301-03"
          }
        ]
      }
    },
    "gitlab.com": {
      "advisories": [
        {
          "affected_range": "==0.23.2",
          "affected_versions": "Version 0.23.2",
          "cvss_v2": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "cvss_v3": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "cwe_ids": [
            "CWE-1035",
            "CWE-937"
          ],
          "date": "2020-12-03",
          "description": "The `svm_predict_values` in `svm.cpp` in Libsvm, as used in scikit-learn and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the `_n_support` array. Note, the scikit-learn vendor\u0027s position is that the behavior can only occur if the library\u0027s API is violated by an application that changes a private attribute.",
          "fixed_versions": [
            "0.24.0"
          ],
          "identifier": "CVE-2020-28975",
          "identifiers": [
            "CVE-2020-28975"
          ],
          "not_impacted": "All versions before 0.23.2, all versions after 0.23.2",
          "package_slug": "pypi/scikit-learn",
          "pubdate": "2020-11-21",
          "solution": "Upgrade to version 0.24.0 or above.",
          "title": "Denial of Service",
          "urls": [
            "https://nvd.nist.gov/vuln/detail/CVE-2020-28975"
          ],
          "uuid": "c66d424c-6a24-46a3-9146-f8ebe4c7891a"
        }
      ]
    },
    "nvd.nist.gov": {
      "cve": {
        "configurations": [
          {
            "nodes": [
              {
                "cpeMatch": [
                  {
                    "criteria": "cpe:2.3:a:scikit-learn:scikit-learn:*:*:*:*:*:*:*:*",
                    "matchCriteriaId": "4320862C-5961-4410-A723-8AC2475C9C51",
                    "versionEndExcluding": "1.0.1",
                    "versionStartIncluding": "0.23.2",
                    "vulnerable": true
                  }
                ],
                "negate": false,
                "operator": "OR"
              }
            ]
          }
        ],
        "descriptions": [
          {
            "lang": "en",
            "value": "svm_predict_values in svm.cpp in Libsvm v324, as used in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of service (segmentation fault) via a crafted model SVM (introduced via pickle, json, or any other model permanence standard) with a large value in the _n_support array. NOTE: the scikit-learn vendor\u0027s position is that the behavior can only occur if the library\u0027s API is violated by an application that changes a private attribute."
          },
          {
            "lang": "es",
            "value": "**EN DISPUTA** La funci\u00f3n svm_predict_values en el archivo svm.cpp en Libsvm versi\u00f3n v324, como es usado en scikit-learn versiones 0.23.2 y otros productos, permite a atacantes causar una denegaci\u00f3n de servicio (fallo de segmentaci\u00f3n) por medio de un modelo SVM dise\u00f1ado (introducido por medio de pickle, json o cualquier otro modelo est\u00e1ndar de permanencia) con un valor grande en la matriz _n_supportNOTA: la posici\u00f3n del proveedor de scikit-learn es que el comportamiento s\u00f3lo puede ocurrir si la API de la biblioteca es violada por una aplicaci\u00f3n que cambia un atributo privado"
          }
        ],
        "id": "CVE-2020-28975",
        "lastModified": "2024-04-11T01:08:20.780",
        "metrics": {
          "cvssMetricV2": [
            {
              "acInsufInfo": false,
              "baseSeverity": "MEDIUM",
              "cvssData": {
                "accessComplexity": "LOW",
                "accessVector": "NETWORK",
                "authentication": "NONE",
                "availabilityImpact": "PARTIAL",
                "baseScore": 5.0,
                "confidentialityImpact": "NONE",
                "integrityImpact": "NONE",
                "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
                "version": "2.0"
              },
              "exploitabilityScore": 10.0,
              "impactScore": 2.9,
              "obtainAllPrivilege": false,
              "obtainOtherPrivilege": false,
              "obtainUserPrivilege": false,
              "source": "nvd@nist.gov",
              "type": "Primary",
              "userInteractionRequired": false
            }
          ],
          "cvssMetricV31": [
            {
              "cvssData": {
                "attackComplexity": "LOW",
                "attackVector": "NETWORK",
                "availabilityImpact": "HIGH",
                "baseScore": 7.5,
                "baseSeverity": "HIGH",
                "confidentialityImpact": "NONE",
                "integrityImpact": "NONE",
                "privilegesRequired": "NONE",
                "scope": "UNCHANGED",
                "userInteraction": "NONE",
                "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
                "version": "3.1"
              },
              "exploitabilityScore": 3.9,
              "impactScore": 3.6,
              "source": "nvd@nist.gov",
              "type": "Primary"
            }
          ]
        },
        "published": "2020-11-21T21:15:10.680",
        "references": [
          {
            "source": "cve@mitre.org",
            "tags": [
              "Exploit",
              "Third Party Advisory",
              "VDB Entry"
            ],
            "url": "http://packetstormsecurity.com/files/160281/SciKit-Learn-0.23.2-Denial-Of-Service.html"
          },
          {
            "source": "cve@mitre.org",
            "tags": [
              "Mailing List",
              "Third Party Advisory"
            ],
            "url": "http://seclists.org/fulldisclosure/2020/Nov/44"
          },
          {
            "source": "cve@mitre.org",
            "tags": [
              "Exploit",
              "Third Party Advisory"
            ],
            "url": "https://github.com/cjlin1/libsvm/blob/9a3a9708926dec87d382c43b203f2ca19c2d56a0/svm.cpp#L2501"
          },
          {
            "source": "cve@mitre.org",
            "tags": [
              "Patch",
              "Third Party Advisory"
            ],
            "url": "https://github.com/scikit-learn/scikit-learn/commit/1bf13d567d3cd74854aa8343fd25b61dd768bb85"
          },
          {
            "source": "cve@mitre.org",
            "tags": [
              "Exploit",
              "Issue Tracking",
              "Third Party Advisory"
            ],
            "url": "https://github.com/scikit-learn/scikit-learn/issues/18891"
          },
          {
            "source": "cve@mitre.org",
            "tags": [
              "Third Party Advisory"
            ],
            "url": "https://security.gentoo.org/glsa/202301-03"
          }
        ],
        "sourceIdentifier": "cve@mitre.org",
        "vulnStatus": "Modified",
        "weaknesses": [
          {
            "description": [
              {
                "lang": "en",
                "value": "NVD-CWE-noinfo"
              }
            ],
            "source": "nvd@nist.gov",
            "type": "Primary"
          }
        ]
      }
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…