pysec-2022-76
Vulnerability from pysec
Published
2022-02-03 12:15
Modified
2022-03-09 00:17
Details

Tensorflow is an Open Source Machine Learning Framework. The implementations of Sparse*Cwise* ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or CHECK-fails when building new TensorShape objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large TensorShape with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.

Impacted products
Name purl
tensorflow-cpu pkg:pypi/tensorflow-cpu



{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu",
        "purl": "pkg:pypi/tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "e952a89b7026b98fe8cbe626514a93ed68b7c510"
            },
            {
              "fixed": "1b54cadd19391b60b6fcccd8d076426f7221d5e8"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            },
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "1.15.0",
        "2.1.0",
        "2.1.1",
        "2.1.2",
        "2.1.3",
        "2.1.4",
        "2.2.0",
        "2.2.1",
        "2.2.2",
        "2.2.3",
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.3.3",
        "2.3.4",
        "2.4.0",
        "2.4.1",
        "2.4.2",
        "2.4.3",
        "2.4.4",
        "2.5.0",
        "2.5.1",
        "2.5.2",
        "2.6.0",
        "2.6.1",
        "2.6.2"
      ]
    }
  ],
  "aliases": [
    "CVE-2022-23567",
    "GHSA-rrx2-r989-2c43"
  ],
  "details": "Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.",
  "id": "PYSEC-2022-76",
  "modified": "2022-03-09T00:17:33.310692Z",
  "published": "2022-02-03T12:15:00Z",
  "references": [
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
    },
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
    },
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…