Vulnerabilites related to google - tensorflow
CVE-2021-37667 (GCVE-0-2021-37667)
Vulnerability from cvelistv5
Published
2021-08-12 21:40
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.485Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:40:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6"
        }
      ],
      "source": {
        "advisory": "GHSA-w74j-v8xh-3w5h",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in unicode encoding in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37667",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in unicode encoding in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-w74j-v8xh-3w5h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37667",
    "datePublished": "2021-08-12T21:40:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.485Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15191 (GCVE-0-2020-15191)
Vulnerability from cvelistv5
Published
2020-09-25 18:41
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
  • CWE-476 - {"":"NULL Pointer Dereference"}
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes an invalid argument to `dlpack.to_dlpack` the expected validations will cause variables to bind to `nullptr` while setting a `status` variable to the error condition. However, this `status` argument is not properly checked. Hence, code following these methods will bind references to null pointers. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.2.0
Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.683Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.2.0"
            },
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes an invalid argument to `dlpack.to_dlpack` the expected validations will cause variables to bind to `nullptr` while setting a `status` variable to the error condition. However, this `status` argument is not properly checked. Hence, code following these methods will bind references to null pointers. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "{\"CWE-476\":\"NULL Pointer Dereference\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:14",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-q8qj-fc9q-cphr",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15191",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.2.0"
                          },
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes an invalid argument to `dlpack.to_dlpack` the expected validations will cause variables to bind to `nullptr` while setting a `status` variable to the error condition. However, this `status` argument is not properly checked. Hence, code following these methods will bind references to null pointers. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-476\":\"NULL Pointer Dereference\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q8qj-fc9q-cphr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15191",
    "datePublished": "2020-09-25T18:41:01",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.683Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41891 (GCVE-0-2022-41891)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:05
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListConcat` is given `element_shape=[]`, it results segmentation fault which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit fc33f3dc4c14051a83eec6535b608abe1d355fde. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.290Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-66vq-54fq-6jvv"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fc33f3dc4c14051a83eec6535b608abe1d355fde"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.h"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41891",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:16.796483Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:05:23.222Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListConcat` is given `element_shape=[]`, it results segmentation fault which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit fc33f3dc4c14051a83eec6535b608abe1d355fde. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-66vq-54fq-6jvv"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/fc33f3dc4c14051a83eec6535b608abe1d355fde"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.h"
        }
      ],
      "source": {
        "advisory": "GHSA-66vq-54fq-6jvv",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `tf.raw_ops.TensorListConcat` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41891",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:05:23.222Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35963 (GCVE-0-2022-35963)
Vulnerability from cvelistv5
Published
2022-09-16 20:10
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.270Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35963",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:53.202986Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:41.735Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:10:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad"
        }
      ],
      "source": {
        "advisory": "GHSA-84jm-4cf3-9jfm",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failures in `FractionalAvgPoolGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35963",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failures in `FractionalAvgPoolGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-84jm-4cf3-9jfm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35963",
    "datePublished": "2022-09-16T20:10:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:41.735Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23559 (GCVE-0-2022-23559)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in embedding lookup operations. Both `embedding_size` and `lookup_size` are products of values provided by the user. Hence, a malicious user could trigger overflows in the multiplication. In certain scenarios, this can then result in heap OOB read/write. Users are advised to upgrade to a patched version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.566Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23559",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:41.212287Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:20.273Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in embedding lookup operations. Both `embedding_size` and `lookup_size` are products of values provided by the user. Hence, a malicious user could trigger overflows in the multiplication. In certain scenarios, this can then result in heap OOB read/write. Users are advised to upgrade to a patched version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:37.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189"
        }
      ],
      "source": {
        "advisory": "GHSA-98p5-x8x4-c9m5",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23559",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in embedding lookup operations. Both `embedding_size` and `lookup_size` are products of values provided by the user. Hence, a malicious user could trigger overflows in the multiplication. In certain scenarios, this can then result in heap OOB read/write. Users are advised to upgrade to a patched version."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-98p5-x8x4-c9m5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23559",
    "datePublished": "2022-02-04T22:32:37.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:20.273Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29513 (GCVE-0-2021-29513)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.380Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:30",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489"
        }
      ],
      "source": {
        "advisory": "GHSA-452g-f7fp-9jf7",
        "discovery": "UNKNOWN"
      },
      "title": "Type confusion during tensor casts lead to dereferencing null pointers",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29513",
          "STATE": "PUBLIC",
          "TITLE": "Type confusion during tensor casts lead to dereferencing null pointers"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-452g-f7fp-9jf7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29513",
    "datePublished": "2021-05-14T19:36:30",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.380Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29206 (GCVE-0-2022-29206)
Vulnerability from cvelistv5
Published
2022-05-20 22:15
Modified
2025-04-22 17:58
CWE
  • CWE-20 - Improper Input Validation
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.022Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29206",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:57.932189Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:39.550Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:15:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-rc9w-5c64-9vqq",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation results in undefined behavior in `SparseTensorDenseAdd` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29206",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation results in undefined behavior in `SparseTensorDenseAdd` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rc9w-5c64-9vqq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29206",
    "datePublished": "2022-05-20T22:15:13.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:39.550Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29569 (GCVE-0-2021-29569)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.766Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
        }
      ],
      "source": {
        "advisory": "GHSA-3h8m-483j-7xxm",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in `RequantizationRange`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29569",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds read in `RequantizationRange`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3h8m-483j-7xxm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29569",
    "datePublished": "2021-05-14T19:16:36",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.766Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29213 (GCVE-0-2022-29213)
Vulnerability from cvelistv5
Published
2022-05-20 23:30
Modified
2025-04-22 17:56
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.052Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/55263"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/55274"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29213",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:18.604531Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:56:54.042Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:30:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/55263"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/55274"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73"
        }
      ],
      "source": {
        "advisory": "GHSA-5889-7v45-q28m",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in signal ops leads to crashes in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29213",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in signal ops leads to crashes in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/55263",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/55263"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/55274",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/pull/55274"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5889-7v45-q28m",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29213",
    "datePublished": "2022-05-20T23:30:15.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:56:54.042Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37653 (GCVE-0-2021-37653)
Vulnerability from cvelistv5
Published
2021-08-12 17:35
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a floating point exception in `tf.raw_ops.ResourceGather`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) computes the value of a value, `batch_size`, and then divides by it without checking that this value is not 0. We have patched the issue in GitHub commit ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.402Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a floating point exception in `tf.raw_ops.ResourceGather`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) computes the value of a value, `batch_size`, and then divides by it without checking that this value is not 0. We have patched the issue in GitHub commit ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T17:35:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11"
        }
      ],
      "source": {
        "advisory": "GHSA-qjj8-32p7-h289",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `ResourceGather` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37653",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `ResourceGather` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a floating point exception in `tf.raw_ops.ResourceGather`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) computes the value of a value, `batch_size`, and then divides by it without checking that this value is not 0. We have patched the issue in GitHub commit ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qjj8-32p7-h289",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37653",
    "datePublished": "2021-08-12T17:35:22",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.402Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23563 (GCVE-0-2022-23563)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
  • CWE-367 - Time-of-check Time-of-use (TOCTOU) Race Condition
Summary
Tensorflow is an Open Source Machine Learning Framework. In multiple places, TensorFlow uses `tempfile.mktemp` to create temporary files. While this is acceptable in testing, in utilities and libraries it is dangerous as a different process can create the file between the check for the filename in `mktemp` and the actual creation of the file by a subsequent operation (a TOC/TOU type of weakness). In several instances, TensorFlow was supposed to actually create a temporary directory instead of a file. This logic bug is hidden away by the `mktemp` function usage. We have patched the issue in several commits, replacing `mktemp` with the safer `mkstemp`/`mkdtemp` functions, according to the usage pattern. Users are advised to upgrade as soon as possible.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.464Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23563",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:56:31.754325Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:51.891Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. In multiple places, TensorFlow uses `tempfile.mktemp` to create temporary files. While this is acceptable in testing, in utilities and libraries it is dangerous as a different process can create the file between the check for the filename in `mktemp` and the actual creation of the file by a subsequent operation (a TOC/TOU type of weakness). In several instances, TensorFlow was supposed to actually create a temporary directory instead of a file. This logic bug is hidden away by the `mktemp` function usage. We have patched the issue in several commits, replacing `mktemp` with the safer `mkstemp`/`mkdtemp` functions, according to the usage pattern. Users are advised to upgrade as soon as possible."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-367",
              "description": "CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:38.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm"
        }
      ],
      "source": {
        "advisory": "GHSA-wc4g-r73w-x8mm",
        "discovery": "UNKNOWN"
      },
      "title": "Insecure temporary file in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23563",
          "STATE": "PUBLIC",
          "TITLE": "Insecure temporary file in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. In multiple places, TensorFlow uses `tempfile.mktemp` to create temporary files. While this is acceptable in testing, in utilities and libraries it is dangerous as a different process can create the file between the check for the filename in `mktemp` and the actual creation of the file by a subsequent operation (a TOC/TOU type of weakness). In several instances, TensorFlow was supposed to actually create a temporary directory instead of a file. This logic bug is hidden away by the `mktemp` function usage. We have patched the issue in several commits, replacing `mktemp` with the safer `mkstemp`/`mkdtemp` functions, according to the usage pattern. Users are advised to upgrade as soon as possible."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wc4g-r73w-x8mm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23563",
    "datePublished": "2022-02-04T22:32:38.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:51.891Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35966 (GCVE-0-2022-35966)
Vulnerability from cvelistv5
Published
2022-09-16 20:35
Modified
2025-04-23 17:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedAvgPool` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.499Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35966",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:40.722296Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:18.137Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAvgPool` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:35:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622"
        }
      ],
      "source": {
        "advisory": "GHSA-4w68-4x85-mjj9",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedAvgPool` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35966",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedAvgPool` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAvgPool` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4w68-4x85-mjj9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35966",
    "datePublished": "2022-09-16T20:35:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:18.137Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23584 (GCVE-0-2022-23584)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a use after free behavior when decoding PNG images. After `png::CommonFreeDecode(&decode)` gets called, the values of `decode.width` and `decode.height` are in an unspecified state. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:47.079Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23584",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:15.979088Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:25.572Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a use after free behavior when decoding PNG images. After `png::CommonFreeDecode(\u0026decode)` gets called, the values of `decode.width` and `decode.height` are in an unspecified state. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-416",
              "description": "CWE-416: Use After Free",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:16.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346"
        }
      ],
      "source": {
        "advisory": "GHSA-24x4-6qmh-88qg",
        "discovery": "UNKNOWN"
      },
      "title": "Use after free in `DecodePng` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23584",
          "STATE": "PUBLIC",
          "TITLE": "Use after free in `DecodePng` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a use after free behavior when decoding PNG images. After `png::CommonFreeDecode(\u0026decode)` gets called, the values of `decode.width` and `decode.height` are in an unspecified state. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-416: Use After Free"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-24x4-6qmh-88qg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23584",
    "datePublished": "2022-02-04T22:32:16.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:25.572Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15206 (GCVE-0-2020-15206)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
Severity ?
CWE
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow's `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.955Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow\u0027s `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-w5gh-2wr2-pm6g",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15206",
          "STATE": "PUBLIC",
          "TITLE": "Denial of Service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow\u0027s `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-w5gh-2wr2-pm6g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15206",
    "datePublished": "2020-09-25T18:45:51",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.955Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29595 (GCVE-0-2021-29595)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthToSpace` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69). An attacker can craft a model such that `params->block_size` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.254Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthToSpace` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69). An attacker can craft a model such that `params-\u003eblock_size` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:05",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9"
        }
      ],
      "source": {
        "advisory": "GHSA-vf94-36g5-69v8",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `DepthToSpace`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29595",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `DepthToSpace`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthToSpace` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69). An attacker can craft a model such that `params-\u003eblock_size` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vf94-36g5-69v8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29595",
    "datePublished": "2021-05-14T19:22:05",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.254Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29543 (GCVE-0-2021-29543)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.262Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2"
        }
      ],
      "source": {
        "advisory": "GHSA-fphq-gw9m-ghrv",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in `CTCGreedyDecoder`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29543",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in `CTCGreedyDecoder`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fphq-gw9m-ghrv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29543",
    "datePublished": "2021-05-14T19:11:12",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.262Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29594 (GCVE-0-2021-29594)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. TFLite's convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.240Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. TFLite\u0027s convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552"
        }
      ],
      "source": {
        "advisory": "GHSA-3qgw-p4fm-x7gf",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s convolution code",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29594",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s convolution code"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. TFLite\u0027s convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3qgw-p4fm-x7gf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29594",
    "datePublished": "2021-05-14T19:22:10",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.240Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41200 (GCVE-0-2021-41200)
Vulnerability from cvelistv5
Published
2021-11-05 20:00
Modified
2024-11-13 21:44
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.summary.create_file_writer` is called with non-scalar arguments code crashes due to a `CHECK`-fail. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.607Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh8h-7j2j-qv4f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46909"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/874bda09e6702cd50bac90b453b50bcc65b2769e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.summary.create_file_writer` is called with non-scalar arguments code crashes due to a `CHECK`-fail. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-11-13T21:44:45.830Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh8h-7j2j-qv4f",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh8h-7j2j-qv4f"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/issues/46909",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46909"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/874bda09e6702cd50bac90b453b50bcc65b2769e",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/874bda09e6702cd50bac90b453b50bcc65b2769e"
        }
      ],
      "source": {
        "advisory": "GHSA-gh8h-7j2j-qv4f",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `tf.summary.create_file_writer`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41200",
    "datePublished": "2021-11-05T20:00:12",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-11-13T21:44:45.830Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23595 (GCVE-0-2022-23595)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr->config_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.868Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23595",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:22.313656Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:53.489Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr-\u003econfig_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104"
        }
      ],
      "source": {
        "advisory": "GHSA-fpcp-9h7m-ffpx",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23595",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr-\u003econfig_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fpcp-9h7m-ffpx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23595",
    "datePublished": "2022-02-04T22:32:13.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:53.489Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15212 (GCVE-0-2020-15212)
Vulnerability from cvelistv5
Published
2020-09-25 18:50
Modified
2024-08-04 13:08
CWE
  • CWE-787 - {"":"Out-of-bounds Write"}
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.919Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "{\"CWE-787\":\"Out-of-bounds Write\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:50:33",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq"
        }
      ],
      "source": {
        "advisory": "GHSA-hx2x-85gr-wrpq",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds access in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15212",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds access in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-787\":\"Out-of-bounds Write\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hx2x-85gr-wrpq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15212",
    "datePublished": "2020-09-25T18:50:34",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.919Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41907 (GCVE-0-2022-41907)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:03
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ResizeNearestNeighborGrad` is given a large `size` input, it overflows. We have patched the issue in GitHub commit 00c821af032ba9e5f5fa3fe14690c8d28a657624. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.343Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-368v-7v32-52fx"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/00c821af032ba9e5f5fa3fe14690c8d28a657624"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/resize_nearest_neighbor_op.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41907",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:43.120349Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:03:11.875Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ResizeNearestNeighborGrad` is given a large `size` input, it overflows. We have patched the issue in GitHub commit 00c821af032ba9e5f5fa3fe14690c8d28a657624. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-368v-7v32-52fx"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/00c821af032ba9e5f5fa3fe14690c8d28a657624"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/resize_nearest_neighbor_op.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-368v-7v32-52fx",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow in `ResizeNearestNeighborGrad` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41907",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:03:11.875Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37678 (GCVE-0-2021-37678)
Vulnerability from cvelistv5
Published
2021-08-12 23:05
Modified
2024-08-04 01:23
Severity ?
CWE
  • CWE-502 - Deserialization of Untrusted Data
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.401Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 9.3,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502: Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T23:05:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012"
        }
      ],
      "source": {
        "advisory": "GHSA-r6jx-9g48-2r5r",
        "discovery": "UNKNOWN"
      },
      "title": "Arbitrary code execution due to YAML deserialization",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37678",
          "STATE": "PUBLIC",
          "TITLE": "Arbitrary code execution due to YAML deserialization"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 9.3,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-502: Deserialization of Untrusted Data"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r6jx-9g48-2r5r",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37678",
    "datePublished": "2021-08-12T23:05:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.401Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29191 (GCVE-0-2022-29191)
Vulnerability from cvelistv5
Published
2022-05-20 20:50
Modified
2025-04-22 18:00
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.087Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29191",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:43.344139Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:00:23.414Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": " \u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T20:50:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112"
        }
      ],
      "source": {
        "advisory": "GHSA-fv25-wrff-wf86",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service via `GetSessionTensor` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29191",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service via `GetSessionTensor` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": " \u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fv25-wrff-wf86",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29191",
    "datePublished": "2022-05-20T20:50:11.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:00:23.414Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29210 (GCVE-0-2022-29210)
Vulnerability from cvelistv5
Published
2022-05-20 23:25
Modified
2025-04-23 18:23
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
  • CWE-122 - Heap-based Buffer Overflow
Summary
TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: == 2.8.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.137Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29210",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:07:00.383813Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T18:23:44.004Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "== 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "CWE-122: Heap-based Buffer Overflow",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:25:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64"
        }
      ],
      "source": {
        "advisory": "GHSA-hc2f-7r5r-r2hg",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow due to incorrect hash function in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29210",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow due to incorrect hash function in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "== 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-122: Heap-based Buffer Overflow"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hc2f-7r5r-r2hg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29210",
    "datePublished": "2022-05-20T23:25:21.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-23T18:23:44.004Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29578 (GCVE-0-2021-29578)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.849Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:54",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
        }
      ],
      "source": {
        "advisory": "GHSA-6f89-8j54-29xf",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `FractionalAvgPoolGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29578",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `FractionalAvgPoolGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6f89-8j54-29xf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29578",
    "datePublished": "2021-05-14T19:15:54",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.849Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23560 (GCVE-0-2022-23560)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would allow limited reads and writes outside of arrays in TFLite. This exploits missing validation in the conversion from sparse tensors to dense tensors. The fix is included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. Users are advised to upgrade as soon as possible.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.562Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23560",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:44.544217Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:30.365Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would allow limited reads and writes outside of arrays in TFLite. This exploits missing validation in the conversion from sparse tensors to dense tensors. The fix is included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. Users are advised to upgrade as soon as possible."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:36.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293"
        }
      ],
      "source": {
        "advisory": "GHSA-4hvf-hxvg-f67v",
        "discovery": "UNKNOWN"
      },
      "title": "Read and Write outside of bounds in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23560",
          "STATE": "PUBLIC",
          "TITLE": "Read and Write outside of bounds in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would allow limited reads and writes outside of arrays in TFLite. This exploits missing validation in the conversion from sparse tensors to dense tensors. The fix is included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. Users are advised to upgrade as soon as possible."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4hvf-hxvg-f67v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23560",
    "datePublished": "2022-02-04T22:32:36.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:30.365Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23580 (GCVE-0-2022-23580)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Summary
Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.550Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23580",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:27.461132Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:56.530Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400: Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:25.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790"
        }
      ],
      "source": {
        "advisory": "GHSA-627q-g293-49q7",
        "discovery": "UNKNOWN"
      },
      "title": "Abort caused by allocating a vector that is too large in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23580",
          "STATE": "PUBLIC",
          "TITLE": "Abort caused by allocating a vector that is too large in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-400: Uncontrolled Resource Consumption"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-627q-g293-49q7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23580",
    "datePublished": "2022-02-04T22:32:25.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:56.530Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23587 (GCVE-0-2022-23587)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow is vulnerable to an integer overflow during cost estimation for crop and resize. Since the cropping parameters are user controlled, a malicious person can trigger undefined behavior. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.906Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23587",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:58.828296Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:44.601Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow is vulnerable to an integer overflow during cost estimation for crop and resize. Since the cropping parameters are user controlled, a malicious person can trigger undefined behavior. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689"
        }
      ],
      "source": {
        "advisory": "GHSA-8jj7-5vxc-pg2q",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23587",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow is vulnerable to an integer overflow during cost estimation for crop and resize. Since the cropping parameters are user controlled, a malicious person can trigger undefined behavior. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8jj7-5vxc-pg2q",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23587",
    "datePublished": "2022-02-04T22:32:14.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:44.601Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37646 (GCVE-0-2021-37646)
Vulnerability from cvelistv5
Published
2021-08-12 21:10
Modified
2024-08-04 01:23
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.254Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:10:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5"
        }
      ],
      "source": {
        "advisory": "GHSA-h6jh-7gv5-28vg",
        "discovery": "UNKNOWN"
      },
      "title": "Bad alloc in `StringNGrams` caused by integer conversion in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37646",
          "STATE": "PUBLIC",
          "TITLE": "Bad alloc in `StringNGrams` caused by integer conversion in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h6jh-7gv5-28vg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37646",
    "datePublished": "2021-08-12T21:10:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.254Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23568 (GCVE-0-2022-23568)
Vulnerability from cvelistv5
Published
2022-02-03 11:42
Modified
2025-05-05 16:26
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.545Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23568",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:24.100251Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:26:20.925Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:42:54.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-6445-fm66-fvq2",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflows in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23568",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflows in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6445-fm66-fvq2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23568",
    "datePublished": "2022-02-03T11:42:54.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:26:20.925Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29199 (GCVE-0-2022-29199)
Vulnerability from cvelistv5
Published
2022-05-20 21:40
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.045Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29199",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:29.603017Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:37.834Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:40:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98"
        }
      ],
      "source": {
        "advisory": "GHSA-p9rc-rmr5-529j",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `LoadAndRemapMatrix`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29199",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `LoadAndRemapMatrix`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p9rc-rmr5-529j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29199",
    "datePublished": "2022-05-20T21:40:12.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:37.834Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29612 (GCVE-0-2021-29612)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx->status()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx->status()` before continuing. This doesn't happen in this op's implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.354Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx-\u003estatus()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx-\u003estatus()` before continuing. This doesn\u0027t happen in this op\u0027s implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:38",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
        }
      ],
      "source": {
        "advisory": "GHSA-2xgj-xhgf-ggjv",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `BandedTriangularSolve`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29612",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `BandedTriangularSolve`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx-\u003estatus()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx-\u003estatus()` before continuing. This doesn\u0027t happen in this op\u0027s implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2xgj-xhgf-ggjv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29612",
    "datePublished": "2021-05-14T19:20:38",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.354Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41207 (GCVE-0-2021-41207)
Vulnerability from cvelistv5
Published
2021-11-05 21:50
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.386Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T21:50:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h"
        }
      ],
      "source": {
        "advisory": "GHSA-7v94-64hj-m82h",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in `ParallelConcat`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41207",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in `ParallelConcat`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7v94-64hj-m82h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41207",
    "datePublished": "2021-11-05T21:50:10",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.386Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29193 (GCVE-0-2022-29193)
Vulnerability from cvelistv5
Published
2022-05-20 21:20
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.TensorSummaryV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.253Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29193",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:35.600552Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:57.988Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": " \u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.TensorSummaryV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:20:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58"
        }
      ],
      "source": {
        "advisory": "GHSA-2p9q-h29j-3f5v",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes `TensorSummaryV2` in TensorFlow to crash",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29193",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes `TensorSummaryV2` in TensorFlow to crash"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": " \u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.TensorSummaryV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2p9q-h29j-3f5v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29193",
    "datePublished": "2022-05-20T21:20:14.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:57.988Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29575 (GCVE-0-2021-29575)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.085Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:09",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23"
        }
      ],
      "source": {
        "advisory": "GHSA-6qgm-fv6v-rfpv",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow/denial of service in `tf.raw_ops.ReverseSequence`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29575",
          "STATE": "PUBLIC",
          "TITLE": "Overflow/denial of service in `tf.raw_ops.ReverseSequence`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6qgm-fv6v-rfpv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29575",
    "datePublished": "2021-05-14T19:16:09",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.085Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37649 (GCVE-0-2021-37649)
Vulnerability from cvelistv5
Published
2021-08-12 18:10
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.296Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:10:32",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd"
        }
      ],
      "source": {
        "advisory": "GHSA-6gv8-p3vj-pxvr",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `UncompressElement` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37649",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `UncompressElement` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6gv8-p3vj-pxvr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37649",
    "datePublished": "2021-08-12T18:10:32",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.296Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41202 (GCVE-0-2021-41202)
Vulnerability from cvelistv5
Published
2021-11-05 21:45
Modified
2024-08-04 03:08
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.442Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46889"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46912"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T21:45:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46889"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46912"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899"
        }
      ],
      "source": {
        "advisory": "GHSA-xrqm-fpgr-6hhx",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow/crash in `tf.range`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41202",
          "STATE": "PUBLIC",
          "TITLE": "Overflow/crash in `tf.range`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46889",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46889"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46912",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46912"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xrqm-fpgr-6hhx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41202",
    "datePublished": "2021-11-05T21:45:18",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.442Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25665 (GCVE-0-2023-25665)
Vulnerability from cvelistv5
Published
2023-03-24 23:39
Modified
2025-02-19 20:31
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `SparseSparseMaximum` is given invalid sparse tensors as inputs, it can give a null pointer error. A fix is included in TensorFlow version 2.12 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.311Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25665",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:30:58.928514Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:31:10.311Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `SparseSparseMaximum` is given invalid sparse tensors as inputs, it can give a null pointer error. A fix is included in TensorFlow version 2.12 and version 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:39:26.921Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04"
        }
      ],
      "source": {
        "advisory": "GHSA-558h-mq8x-7q9g",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Null Pointer Error in SparseSparseMaximum"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25665",
    "datePublished": "2023-03-24T23:39:26.921Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:31:10.311Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29558 (GCVE-0-2021-29558)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.646Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:35",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31"
        }
      ],
      "source": {
        "advisory": "GHSA-mqh2-9wrp-vx84",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `SparseSplit`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29558",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `SparseSplit`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mqh2-9wrp-vx84",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29558",
    "datePublished": "2021-05-14T19:17:35",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.646Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29534 (GCVE-0-2021-29534)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.772Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:57",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
        }
      ],
      "source": {
        "advisory": "GHSA-6j9c-grc6-5m6g",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in SparseConcat",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29534",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in SparseConcat"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6j9c-grc6-5m6g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29534",
    "datePublished": "2021-05-14T19:11:57",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.772Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29615 (GCVE-0-2021-29615)
Vulnerability from cvelistv5
Published
2021-05-14 19:25
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.342Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-674",
              "description": "CWE-674: Uncontrolled Recursion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:25:31",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1"
        }
      ],
      "source": {
        "advisory": "GHSA-qw5h-7f53-xrp6",
        "discovery": "UNKNOWN"
      },
      "title": "Stack overflow in `ParseAttrValue` with nested tensors",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29615",
          "STATE": "PUBLIC",
          "TITLE": "Stack overflow in `ParseAttrValue` with nested tensors"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-674: Uncontrolled Recursion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qw5h-7f53-xrp6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29615",
    "datePublished": "2021-05-14T19:25:31",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.342Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41897 (GCVE-0-2022-41897)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:04
CWE
Summary
TensorFlow is an open source platform for machine learning. If `FractionMaxPoolGrad` is given outsize inputs `row_pooling_sequence` and `col_pooling_sequence`, TensorFlow will crash. We have patched the issue in GitHub commit d71090c3e5ca325bdf4b02eb236cfb3ee823e927. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.376Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2w8-jw48-fr7j"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d71090c3e5ca325bdf4b02eb236cfb3ee823e927"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/fractional_max_pool_op.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41897",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:01.244296Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:04:11.757Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `FractionMaxPoolGrad` is given outsize inputs `row_pooling_sequence` and `col_pooling_sequence`, TensorFlow will crash. We have patched the issue in GitHub commit d71090c3e5ca325bdf4b02eb236cfb3ee823e927. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2w8-jw48-fr7j"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/d71090c3e5ca325bdf4b02eb236cfb3ee823e927"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/fractional_max_pool_op.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-f2w8-jw48-fr7j",
        "discovery": "UNKNOWN"
      },
      "title": "`FractionalMaxPoolGrad` Heap out of bounds read in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41897",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:04:11.757Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29583 (GCVE-0-2021-29583)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.268Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0"
        }
      ],
      "source": {
        "advisory": "GHSA-9xh4-23q4-v6wr",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow and undefined behavior in `FusedBatchNorm`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29583",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow and undefined behavior in `FusedBatchNorm`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9xh4-23q4-v6wr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29583",
    "datePublished": "2021-05-14T19:15:27",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.268Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35952 (GCVE-0-2022-35952)
Vulnerability from cvelistv5
Published
2022-09-16 19:50
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The `UnbatchGradOp` function takes an argument `id` that is assumed to be a scalar. A nonscalar `id` can trigger a `CHECK` failure and crash the program. It also requires its argument `batch_index` to contain three times the number of elements as indicated in its `batch_index.dim_size(0)`. An incorrect `batch_index` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.175Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35952",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:01.138565Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:58.894Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `UnbatchGradOp` function takes an argument `id` that is assumed to be a scalar. A nonscalar `id` can trigger a `CHECK` failure and crash the program. It also requires its argument `batch_index` to contain three times the number of elements as indicated in its `batch_index.dim_size(0)`. An incorrect `batch_index` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:50:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891"
        }
      ],
      "source": {
        "advisory": "GHSA-h5vq-gw2c-pq47",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failures in `UnbatchGradOp` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35952",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failures in `UnbatchGradOp` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `UnbatchGradOp` function takes an argument `id` that is assumed to be a scalar. A nonscalar `id` can trigger a `CHECK` failure and crash the program. It also requires its argument `batch_index` to contain three times the number of elements as indicated in its `batch_index.dim_size(0)`. An incorrect `batch_index` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h5vq-gw2c-pq47",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35952",
    "datePublished": "2022-09-16T19:50:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:58.894Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37691 (GCVE-0-2021-37691)
Vulnerability from cvelistv5
Published
2021-08-12 22:25
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.519Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:25:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9"
        }
      ],
      "source": {
        "advisory": "GHSA-27qf-jwm8-g7f3",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in LSH in TensorFlow Lite ",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37691",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in LSH in TensorFlow Lite "
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-27qf-jwm8-g7f3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37691",
    "datePublished": "2021-08-12T22:25:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.519Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29571 (GCVE-0-2021-29571)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.664Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517"
        }
      ],
      "source": {
        "advisory": "GHSA-whr9-vfh2-7hm6",
        "discovery": "UNKNOWN"
      },
      "title": "Memory corruption in `DrawBoundingBoxesV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29571",
          "STATE": "PUBLIC",
          "TITLE": "Memory corruption in `DrawBoundingBoxesV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-whr9-vfh2-7hm6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29571",
    "datePublished": "2021-05-14T19:16:27",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.664Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41884 (GCVE-0-2022-41884)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:06
CWE
  • CWE-670 - Always-Incorrect Control Flow Implementation
Summary
TensorFlow is an open source platform for machine learning. If a numpy array is created with a shape such that one element is zero and the others sum to a large number, an error will be raised. We have patched the issue in GitHub commit 2b56169c16e375c521a3bc8ea658811cc0793784. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.281Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jq6x-99hj-q636"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2b56169c16e375c521a3bc8ea658811cc0793784"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41884",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:39.496021Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:06:54.684Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If a numpy array is created with a shape such that one element is zero and the others sum to a large number, an error will be raised. We have patched the issue in GitHub commit 2b56169c16e375c521a3bc8ea658811cc0793784. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-670",
              "description": "CWE-670: Always-Incorrect Control Flow Implementation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jq6x-99hj-q636"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/2b56169c16e375c521a3bc8ea658811cc0793784"
        }
      ],
      "source": {
        "advisory": "GHSA-jq6x-99hj-q636",
        "discovery": "UNKNOWN"
      },
      "title": "Seg fault in `ndarray_tensor_bridge` due to zero and large inputs in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41884",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:06:54.684Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29555 (GCVE-0-2021-29555)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.286Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:51",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d"
        }
      ],
      "source": {
        "advisory": "GHSA-r35g-4525-29fq",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `FusedBatchNorm`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29555",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `FusedBatchNorm`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r35g-4525-29fq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29555",
    "datePublished": "2021-05-14T19:17:51",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.286Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37692 (GCVE-0-2021-37692)
Vulnerability from cvelistv5
Published
2021-08-12 23:00
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn't checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.419Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/50508"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn\u0027t checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T23:00:14",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/50508"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22"
        }
      ],
      "source": {
        "advisory": "GHSA-cmgw-8vpc-rc59",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault on strings tensors with mistmatched dimensions in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37692",
          "STATE": "PUBLIC",
          "TITLE": "Segfault on strings tensors with mistmatched dimensions in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn\u0027t checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/50508",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/pull/50508"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cmgw-8vpc-rc59",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37692",
    "datePublished": "2021-08-12T23:00:14",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.419Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15190 (GCVE-0-2020-15190)
Vulnerability from cvelistv5
Published
2020-09-25 18:35
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
  • CWE-476 - {"":"NULL Pointer Dereference"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.683Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "{\"CWE-476\":\"NULL Pointer Dereference\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-4g9f-63rx-5cw4",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15190",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-476\":\"NULL Pointer Dereference\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4g9f-63rx-5cw4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15190",
    "datePublished": "2020-09-25T18:35:13",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.683Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15201 (GCVE-0-2020-15201)
Vulnerability from cvelistv5
Published
2020-09-25 18:46
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.883Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:46:21",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4"
        }
      ],
      "source": {
        "advisory": "GHSA-p5f8-gfw5-33w4",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15201",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p5f8-gfw5-33w4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15201",
    "datePublished": "2020-09-25T18:46:21",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.883Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23558 (GCVE-0-2022-23558)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in `TfLiteIntArrayCreate`. The `TfLiteIntArrayGetSizeInBytes` returns an `int` instead of a `size_t. An attacker can control model inputs such that `computed_size` overflows the size of `int` datatype. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.558Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23558",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:49:53.186813Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:00.833Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in `TfLiteIntArrayCreate`. The `TfLiteIntArrayGetSizeInBytes` returns an `int` instead of a `size_t. An attacker can control model inputs such that `computed_size` overflows the size of `int` datatype. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:43.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60"
        }
      ],
      "source": {
        "advisory": "GHSA-9gwq-6cwj-47h3",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in TFLite array creation",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23558",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in TFLite array creation"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in `TfLiteIntArrayCreate`. The `TfLiteIntArrayGetSizeInBytes` returns an `int` instead of a `size_t. An attacker can control model inputs such that `computed_size` overflows the size of `int` datatype. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9gwq-6cwj-47h3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23558",
    "datePublished": "2022-02-04T22:32:43.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:00.833Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41224 (GCVE-0-2021-41224)
Vulnerability from cvelistv5
Published
2021-11-05 20:20
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseFillEmptyRows` can be made to trigger a heap OOB access. This occurs whenever the size of `indices` does not match the size of `values`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.580Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseFillEmptyRows` can be made to trigger a heap OOB access. This occurs whenever the size of `indices` does not match the size of `values`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:20:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b"
        }
      ],
      "source": {
        "advisory": "GHSA-rg3m-hqc5-344v",
        "discovery": "UNKNOWN"
      },
      "title": "`SparseFillEmptyRows` heap OOB read",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41224",
          "STATE": "PUBLIC",
          "TITLE": "`SparseFillEmptyRows` heap OOB read"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseFillEmptyRows` can be made to trigger a heap OOB access. This occurs whenever the size of `indices` does not match the size of `values`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rg3m-hqc5-344v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41224",
    "datePublished": "2021-11-05T20:20:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.580Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23581 (GCVE-0-2022-23581)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.546Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23581",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:32.088897Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:07.180Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:24.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742"
        }
      ],
      "source": {
        "advisory": "GHSA-fq86-3f29-px2c",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures during Grappler\u0027s `IsSimplifiableReshape` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23581",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures during Grappler\u0027s `IsSimplifiableReshape` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fq86-3f29-px2c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23581",
    "datePublished": "2022-02-04T22:32:24.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:07.180Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23561 (GCVE-0-2022-23561)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.500Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23561",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:56:28.819372Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:29.089Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:46.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
        }
      ],
      "source": {
        "advisory": "GHSA-9c78-vcq7-7vxq",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23561",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds write in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9c78-vcq7-7vxq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23561",
    "datePublished": "2022-02-04T22:32:46.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:29.089Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15266 (GCVE-0-2020-15266)
Vulnerability from cvelistv5
Published
2020-10-21 20:30
Modified
2024-08-04 13:15
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
In Tensorflow before version 2.4.0, when the `boxes` argument of `tf.image.crop_and_resize` has a very large value, the CPU kernel implementation receives it as a C++ `nan` floating point value. Attempting to operate on this is undefined behavior which later produces a segmentation fault. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.4.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:15:18.938Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/42129"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.4.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.4.0, when the `boxes` argument of `tf.image.crop_and_resize` has a very large value, the CPU kernel implementation receives it as a C++ `nan` floating point value. Attempting to operate on this is undefined behavior which later produces a segmentation fault. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 3.7,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-21T20:30:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/42129"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845"
        }
      ],
      "source": {
        "advisory": "GHSA-xwhf-g6j5-j5gc",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15266",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.4.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.4.0, when the `boxes` argument of `tf.image.crop_and_resize` has a very large value, the CPU kernel implementation receives it as a C++ `nan` floating point value. Attempting to operate on this is undefined behavior which later produces a segmentation fault. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 3.7,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/42129",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/issues/42129"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xwhf-g6j5-j5gc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15266",
    "datePublished": "2020-10-21T20:30:16",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:15:18.938Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36026 (GCVE-0-2022-36026)
Vulnerability from cvelistv5
Published
2022-09-16 22:05
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.926Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36026",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:43.035563Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:11.089Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:05:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713"
        }
      ],
      "source": {
        "advisory": "GHSA-9cr2-8pwr-fhfq",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `QuantizeAndDequantizeV3` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36026",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `QuantizeAndDequantizeV3` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9cr2-8pwr-fhfq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36026",
    "datePublished": "2022-09-16T22:05:20.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:11.089Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37670 (GCVE-0-2021-37670)
Vulnerability from cvelistv5
Published
2021-08-12 22:25
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.507Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:25:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38"
        }
      ],
      "source": {
        "advisory": "GHSA-9697-98pf-4rw7",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in `UpperBound` and `LowerBound` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37670",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in `UpperBound` and `LowerBound` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9697-98pf-4rw7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37670",
    "datePublished": "2021-08-12T22:25:16",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.507Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41203 (GCVE-0-2021-41203)
Vulnerability from cvelistv5
Published
2021-11-05 21:05
Modified
2024-08-04 03:08
CWE
  • CWE-345 - Insufficient Verification of Data Authenticity
Summary
TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.436Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-345",
              "description": "CWE-345: Insufficient Verification of Data Authenticity",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T21:05:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2"
        }
      ],
      "source": {
        "advisory": "GHSA-7pxj-m4jf-r6h2",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation during checkpoint loading",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41203",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation during checkpoint loading"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-345: Insufficient Verification of Data Authenticity"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7pxj-m4jf-r6h2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41203",
    "datePublished": "2021-11-05T21:05:13",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.436Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36017 (GCVE-0-2022-36017)
Vulnerability from cvelistv5
Published
2022-09-16 22:50
Modified
2025-04-23 16:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.872Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36017",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:48.477907Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:12.195Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:50:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc"
        }
      ],
      "source": {
        "advisory": "GHSA-wqmc-pm8c-2jhc",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `Requantize` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36017",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `Requantize` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wqmc-pm8c-2jhc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36017",
    "datePublished": "2022-09-16T22:50:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:12.195Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35965 (GCVE-0-2022-35965)
Vulnerability from cvelistv5
Published
2022-09-16 20:25
Modified
2025-04-23 17:03
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. If `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.513Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35965",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:50.681374Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:35.785Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:25:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
        }
      ],
      "source": {
        "advisory": "GHSA-qxpx-j395-pw36",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `LowerBound` and `UpperBound` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35965",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `LowerBound` and `UpperBound` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qxpx-j395-pw36",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35965",
    "datePublished": "2022-09-16T20:25:09.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:35.785Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41895 (GCVE-0-2022-41895)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:04
CWE
Summary
TensorFlow is an open source platform for machine learning. If `MirrorPadGrad` is given outsize input `paddings`, TensorFlow will give a heap OOB error. We have patched the issue in GitHub commit 717ca98d8c3bba348ff62281fdf38dcb5ea1ec92. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.391Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gq2j-cr96-gvqx"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/717ca98d8c3bba348ff62281fdf38dcb5ea1ec92"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41895",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:10.432862Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:04:44.581Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `MirrorPadGrad` is given outsize input `paddings`, TensorFlow will give a heap OOB error. We have patched the issue in GitHub commit 717ca98d8c3bba348ff62281fdf38dcb5ea1ec92. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gq2j-cr96-gvqx"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/717ca98d8c3bba348ff62281fdf38dcb5ea1ec92"
        }
      ],
      "source": {
        "advisory": "GHSA-gq2j-cr96-gvqx",
        "discovery": "UNKNOWN"
      },
      "title": "`MirrorPadGrad` heap out of bounds read in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41895",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:04:44.581Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21741 (GCVE-0-2022-21741)
Vulnerability from cvelistv5
Published
2022-02-03 14:27
Modified
2025-05-05 16:30
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. ### Impact An attacker can craft a TFLite model that would trigger a division by zero in the implementation of depthwise convolutions. The parameters of the convolution can be user controlled and are also used within a division operation to determine the size of the padding that needs to be added before applying the convolution. There is no check before this division that the divisor is strictly positive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.486Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21741",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:04.297713Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-369",
                "description": "CWE-369 Divide By Zero",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:30:38.114Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. ### Impact An attacker can craft a TFLite model that would trigger a division by zero in the implementation of depthwise convolutions. The parameters of the convolution can be user controlled and are also used within a division operation to determine the size of the padding that needs to be added before applying the convolution. There is no check before this division that the divisor is strictly positive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T14:27:31.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96"
        }
      ],
      "source": {
        "advisory": "GHSA-428x-9xc2-m8mj",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21741",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. ### Impact An attacker can craft a TFLite model that would trigger a division by zero in the implementation of depthwise convolutions. The parameters of the convolution can be user controlled and are also used within a division operation to determine the size of the padding that needs to be added before applying the convolution. There is no check before this division that the divisor is strictly positive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-428x-9xc2-m8mj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21741",
    "datePublished": "2022-02-03T14:27:31.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:30:38.114Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41896 (GCVE-0-2022-41896)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:04
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `ThreadUnsafeUnigramCandidateSampler` is given input `filterbank_channel_count` greater than the allowed max size, TensorFlow will crash. We have patched the issue in GitHub commit 39ec7eaf1428e90c37787e5b3fbd68ebd3c48860. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.250Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rmg2-f698-wq35"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/39ec7eaf1428e90c37787e5b3fbd68ebd3c48860"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41896",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:05.976282Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:04:23.087Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `ThreadUnsafeUnigramCandidateSampler` is given input `filterbank_channel_count` greater than the allowed max size, TensorFlow will crash. We have patched the issue in GitHub commit 39ec7eaf1428e90c37787e5b3fbd68ebd3c48860. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rmg2-f698-wq35"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/39ec7eaf1428e90c37787e5b3fbd68ebd3c48860"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-rmg2-f698-wq35",
        "discovery": "UNKNOWN"
      },
      "title": "`tf.raw_ops.Mfcc` crashes in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41896",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:04:23.087Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23572 (GCVE-0-2022-23572)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.825Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23572",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:10.047767Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:19.179Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:29.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
        }
      ],
      "source": {
        "advisory": "GHSA-rww7-2gpw-fv6j",
        "discovery": "UNKNOWN"
      },
      "title": "Crash when type cannot be specialized in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23572",
          "STATE": "PUBLIC",
          "TITLE": "Crash when type cannot be specialized in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rww7-2gpw-fv6j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23572",
    "datePublished": "2022-02-04T22:32:29.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:19.179Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37640 (GCVE-0-2021-37640)
Vulnerability from cvelistv5
Published
2021-08-12 17:35
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements. The [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0. We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.5.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.525Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.5.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements. The [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0. We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T17:35:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
        }
      ],
      "source": {
        "advisory": "GHSA-95xm-g58g-3p88",
        "discovery": "UNKNOWN"
      },
      "title": "Integer division by 0 in sparse reshaping in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37640",
          "STATE": "PUBLIC",
          "TITLE": "Integer division by 0 in sparse reshaping in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.5.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements. The [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0. We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-95xm-g58g-3p88",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37640",
    "datePublished": "2021-08-12T17:35:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.525Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37642 (GCVE-0-2021-37642)
Vulnerability from cvelistv5
Published
2021-08-12 17:35
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.ResourceScatterDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit 4aacb30888638da75023e6601149415b39763d76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.345Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.ResourceScatterDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit 4aacb30888638da75023e6601149415b39763d76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T17:35:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76"
        }
      ],
      "source": {
        "advisory": "GHSA-ch4f-829c-v5pw",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `ResourceScatterDiv` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37642",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `ResourceScatterDiv` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.ResourceScatterDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit 4aacb30888638da75023e6601149415b39763d76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-ch4f-829c-v5pw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37642",
    "datePublished": "2021-08-12T17:35:16",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.345Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29528 (GCVE-0-2021-29528)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.075Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:28",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6"
        }
      ],
      "source": {
        "advisory": "GHSA-6f84-42vf-ppwp",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `QuantizedMul`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29528",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `QuantizedMul`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6f84-42vf-ppwp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29528",
    "datePublished": "2021-05-14T19:12:28",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.075Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29618 (GCVE-0-2021-29618)
Vulnerability from cvelistv5
Published
2021-05-14 19:25
Modified
2024-08-03 22:11
CWE
  • CWE-755 - Improper Handling of Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.261Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/issues/42105"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/issues/46973"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-755",
              "description": "CWE-755: Improper Handling of Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:25:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/issues/42105"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/issues/46973"
        }
      ],
      "source": {
        "advisory": "GHSA-xqfj-cr6q-pc8w",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in `tf.transpose` with complex inputs",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29618",
          "STATE": "PUBLIC",
          "TITLE": "Crash in `tf.transpose` with complex inputs"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-755: Improper Handling of Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88"
            },
            {
              "name": "https://github.com/tensorflow/issues/42105",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/issues/42105"
            },
            {
              "name": "https://github.com/tensorflow/issues/46973",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/issues/46973"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xqfj-cr6q-pc8w",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29618",
    "datePublished": "2021-05-14T19:25:18",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.261Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29524 (GCVE-0-2021-29524)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.571Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:34",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
        }
      ],
      "source": {
        "advisory": "GHSA-r4pj-74mg-8868",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `Conv2DBackpropFilter`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29524",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `Conv2DBackpropFilter`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r4pj-74mg-8868",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29524",
    "datePublished": "2021-05-14T19:35:34",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.571Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29585 (GCVE-0-2021-29585)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite computation for size of output after padding, `ComputeOutSize`(https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), does not check that the `stride` argument is not 0 before doing the division. Users can craft special models such that `ComputeOutSize` is called with `stride` set to 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.264Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite computation for size of output after padding, `ComputeOutSize`(https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), does not check that the `stride` argument is not 0 before doing the division. Users can craft special models such that `ComputeOutSize` is called with `stride` set to 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:29",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948"
        }
      ],
      "source": {
        "advisory": "GHSA-mv78-g7wq-mhp4",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in padding computation in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29585",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in padding computation in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite computation for size of output after padding, `ComputeOutSize`(https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), does not check that the `stride` argument is not 0 before doing the division. Users can craft special models such that `ComputeOutSize` is called with `stride` set to 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mv78-g7wq-mhp4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29585",
    "datePublished": "2021-05-14T19:35:29",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.264Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26266 (GCVE-0-2020-26266)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.5
Version: >= 2.0.0, < 2.0.4
Version: >= 2.1.0, < 2.1.3
Version: >= 2.2.0, < 2.2.2
Version: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.617Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:47",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
        }
      ],
      "source": {
        "advisory": "GHSA-qhxx-j73r-qpm2",
        "discovery": "UNKNOWN"
      },
      "title": "Uninitialized memory access in Eigen types in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26266",
          "STATE": "PUBLIC",
          "TITLE": "Uninitialized memory access in Eigen types in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qhxx-j73r-qpm2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26266",
    "datePublished": "2020-12-10T22:10:47",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.617Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21737 (GCVE-0-2022-21737)
Vulnerability from cvelistv5
Published
2022-02-03 13:43
Modified
2025-05-05 16:31
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `*Bincount` operations allows malicious users to cause denial of service by passing in arguments which would trigger a `CHECK`-fail. There are several conditions that the input arguments must satisfy. Some are not caught during shape inference and others are not caught during kernel implementation. This results in `CHECK` failures later when the output tensors get allocated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.865Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21737",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:06.010170Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-754",
                "description": "CWE-754 Improper Check for Unusual or Exceptional Conditions",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:31:26.089Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `*Bincount` operations allows malicious users to cause denial of service by passing in arguments which would trigger a `CHECK`-fail. There are several conditions that the input arguments must satisfy. Some are not caught during shape inference and others are not caught during kernel implementation. This results in `CHECK` failures later when the output tensors get allocated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T13:43:21.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-f2vv-v9cg-qhh7",
        "discovery": "UNKNOWN"
      },
      "title": "Assertion failure based denial of service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21737",
          "STATE": "PUBLIC",
          "TITLE": "Assertion failure based denial of service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `*Bincount` operations allows malicious users to cause denial of service by passing in arguments which would trigger a `CHECK`-fail. There are several conditions that the input arguments must satisfy. Some are not caught during shape inference and others are not caught during kernel implementation. This results in `CHECK` failures later when the output tensors get allocated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f2vv-v9cg-qhh7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21737",
    "datePublished": "2022-02-03T13:43:21.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:31:26.089Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29535 (GCVE-0-2021-29535)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.562Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:52",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87"
        }
      ],
      "source": {
        "advisory": "GHSA-m3f9-w3p3-p669",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `QuantizedMul`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29535",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `QuantizedMul`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m3f9-w3p3-p669",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29535",
    "datePublished": "2021-05-14T19:11:52",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.562Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41209 (GCVE-0-2021-41209)
Vulnerability from cvelistv5
Published
2021-11-05 21:45
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.441Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T21:45:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
        }
      ],
      "source": {
        "advisory": "GHSA-6hpv-v2rx-c5g6",
        "discovery": "UNKNOWN"
      },
      "title": "FPE in convolutions with zero size filters",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41209",
          "STATE": "PUBLIC",
          "TITLE": "FPE in convolutions with zero size filters"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6hpv-v2rx-c5g6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41209",
    "datePublished": "2021-11-05T21:45:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.441Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29568 (GCVE-0-2021-29568)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat<T>()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.719Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat\u003cT\u003e()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:40",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8"
        }
      ],
      "source": {
        "advisory": "GHSA-4p4p-www8-8fv9",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to null in `ParameterizedTruncatedNormal`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29568",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to null in `ParameterizedTruncatedNormal`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat\u003cT\u003e()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4p4p-www8-8fv9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29568",
    "datePublished": "2021-05-14T19:16:41",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.719Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29561 (GCVE-0-2021-29561)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar<T>()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.084Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar\u003cT\u003e()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4"
        }
      ],
      "source": {
        "advisory": "GHSA-gvm4-h8j3-rjrq",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in `LoadAndRemapMatrix`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29561",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in `LoadAndRemapMatrix`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar\u003cT\u003e()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gvm4-h8j3-rjrq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29561",
    "datePublished": "2021-05-14T19:17:19",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.084Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41899 (GCVE-0-2022-41899)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Inputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in `SdcaOptimizer`. We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.187Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41899",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:53.365278Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:03:45.167Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Inputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in `SdcaOptimizer`. We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-27rc-728f-x5w2",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail via inputs in `SdcaOptimizer` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41899",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:03:45.167Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25672 (GCVE-0-2023-25672)
Vulnerability from cvelistv5
Published
2023-03-24 23:31
Modified
2025-02-19 20:14
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. The function `tf.raw_ops.LookupTableImportV2` cannot handle scalars in the `values` parameter and gives an NPE. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.280Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25672",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:14:12.596023Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:14:18.905Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The function `tf.raw_ops.LookupTableImportV2` cannot handle scalars in the `values` parameter and gives an NPE. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:31:05.995Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69"
        }
      ],
      "source": {
        "advisory": "GHSA-94mm-g2mv-8p7r",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Null Pointer Error in LookupTableImportV2"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25672",
    "datePublished": "2023-03-24T23:31:05.995Z",
    "dateReserved": "2023-02-09T20:58:21.859Z",
    "dateUpdated": "2025-02-19T20:14:18.905Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15198 (GCVE-0-2020-15198)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
Summary
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.711Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:25",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3"
        }
      ],
      "source": {
        "advisory": "GHSA-jc87-6vpp-7ff3",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15198",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jc87-6vpp-7ff3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15198",
    "datePublished": "2020-09-25T18:40:25",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.711Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36014 (GCVE-0-2022-36014)
Vulnerability from cvelistv5
Published
2022-09-16 22:35
Modified
2025-04-23 16:59
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::TFOp::nameAttr` receives null type list attributes, it crashes. We have patched the issue in GitHub commits 3a754740d5414e362512ee981eefba41561a63a6 and a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.971Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36014",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:51.188280Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:17.921Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::TFOp::nameAttr` receives null type list attributes, it crashes. We have patched the issue in GitHub commits 3a754740d5414e362512ee981eefba41561a63a6 and a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:35:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6"
        }
      ],
      "source": {
        "advisory": "GHSA-7j3m-8g3c-9qqq",
        "discovery": "UNKNOWN"
      },
      "title": "Null-dereference in `mlir::tfg::TFOp::nameAttr` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36014",
          "STATE": "PUBLIC",
          "TITLE": "Null-dereference in `mlir::tfg::TFOp::nameAttr` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::TFOp::nameAttr` receives null type list attributes, it crashes. We have patched the issue in GitHub commits 3a754740d5414e362512ee981eefba41561a63a6 and a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7j3m-8g3c-9qqq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36014",
    "datePublished": "2022-09-16T22:35:11.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:17.921Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41223 (GCVE-0-2021-41223)
Vulnerability from cvelistv5
Published
2021-11-05 20:20
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.474Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:20:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda"
        }
      ],
      "source": {
        "advisory": "GHSA-f54p-f6jp-4rhr",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in `FusedBatchNorm` kernels",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41223",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in `FusedBatchNorm` kernels"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f54p-f6jp-4rhr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41223",
    "datePublished": "2021-11-05T20:20:16",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.474Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41221 (GCVE-0-2021-41221)
Vulnerability from cvelistv5
Published
2021-11-05 22:15
Modified
2024-08-04 03:08
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.404Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:15:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6"
        }
      ],
      "source": {
        "advisory": "GHSA-cqv6-3phm-hcwx",
        "discovery": "UNKNOWN"
      },
      "title": "Access to invalid memory during shape inference in `Cudnn*` ops",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41221",
          "STATE": "PUBLIC",
          "TITLE": "Access to invalid memory during shape inference in `Cudnn*` ops"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cqv6-3phm-hcwx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41221",
    "datePublished": "2021-11-05T22:15:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.404Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41893 (GCVE-0-2022-41893)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:05
CWE
Summary
TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListResize` is given a nonscalar value for input `size`, it results `CHECK` fail which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 888e34b49009a4e734c27ab0c43b0b5102682c56. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.357Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-67pf-62xr-q35m"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/888e34b49009a4e734c27ab0c43b0b5102682c56"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41893",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:13.816422Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:05:11.169Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListResize` is given a nonscalar value for input `size`, it results `CHECK` fail which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 888e34b49009a4e734c27ab0c43b0b5102682c56. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-67pf-62xr-q35m"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/888e34b49009a4e734c27ab0c43b0b5102682c56"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-67pf-62xr-q35m",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK_EQ` fail in `tf.raw_ops.TensorListResize` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41893",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:05:11.169Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21735 (GCVE-0-2022-21735)
Vulnerability from cvelistv5
Published
2022-02-03 12:53
Modified
2025-05-05 16:31
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.625Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21735",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:14.096137Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-369",
                "description": "CWE-369 Divide By Zero",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:31:46.054Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:53:48.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192"
        }
      ],
      "source": {
        "advisory": "GHSA-87v6-crgm-2gfj",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21735",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-87v6-crgm-2gfj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21735",
    "datePublished": "2022-02-03T12:53:48.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:31:46.054Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29579 (GCVE-0-2021-29579)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.232Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:50",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7"
        }
      ],
      "source": {
        "advisory": "GHSA-79fv-9865-4qcv",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `MaxPoolGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29579",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `MaxPoolGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-79fv-9865-4qcv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29579",
    "datePublished": "2021-05-14T19:15:50",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.232Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29614 (GCVE-0-2021-29614)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-665 - Improper Initialization
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.295Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-665",
              "description": "CWE-665: Improper Initialization",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:28",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d"
        }
      ],
      "source": {
        "advisory": "GHSA-8pmx-p244-g88h",
        "discovery": "UNKNOWN"
      },
      "title": "Interpreter crash from `tf.io.decode_raw`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29614",
          "STATE": "PUBLIC",
          "TITLE": "Interpreter crash from `tf.io.decode_raw`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-665: Improper Initialization"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8pmx-p244-g88h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29614",
    "datePublished": "2021-05-14T19:20:28",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.295Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36003 (GCVE-0-2022-36003)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.531Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36003",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:34.420286Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:52.567Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:21.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
        }
      ],
      "source": {
        "advisory": "GHSA-cv2p-32v3-vhwq",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `RandomPoissonV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36003",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `RandomPoissonV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cv2p-32v3-vhwq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36003",
    "datePublished": "2022-09-16T22:10:21.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:52.567Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29607 (GCVE-0-2021-29607)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.315Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:03",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a"
        }
      ],
      "source": {
        "advisory": "GHSA-gv26-jpj9-c8gq",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `SparseSparseMinimum`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29607",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `SparseSparseMinimum`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gv26-jpj9-c8gq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29607",
    "datePublished": "2021-05-14T19:21:03",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.315Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29573 (GCVE-0-2021-29573)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.676Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d"
        }
      ],
      "source": {
        "advisory": "GHSA-9vpm-rcf4-9wqw",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `MaxPoolGradWithArgmax`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29573",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `MaxPoolGradWithArgmax`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9vpm-rcf4-9wqw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29573",
    "datePublished": "2021-05-14T19:16:18",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.676Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37659 (GCVE-0-2021-37659)
Vulnerability from cvelistv5
Published
2021-08-12 20:25
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.517Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don\u0027t require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:25:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec"
        }
      ],
      "source": {
        "advisory": "GHSA-q3g3-h9r4-prrc",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read via null pointer dereference in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37659",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read via null pointer dereference in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don\u0027t require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q3g3-h9r4-prrc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37659",
    "datePublished": "2021-08-12T20:25:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.517Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36019 (GCVE-0-2022-36019)
Vulnerability from cvelistv5
Published
2022-09-16 22:05
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVarsPerChannel` is given `min` or `max` tensors of a rank other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.760Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36019",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:49.386705Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:22.483Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVarsPerChannel` is given `min` or `max` tensors of a rank other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:05:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7"
        }
      ],
      "source": {
        "advisory": "GHSA-9j4v-pp28-mxv7",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `FakeQuantWithMinMaxVarsPerChannel` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36019",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `FakeQuantWithMinMaxVarsPerChannel` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVarsPerChannel` is given `min` or `max` tensors of a rank other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9j4v-pp28-mxv7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36019",
    "datePublished": "2022-09-16T22:05:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:22.483Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-0649 (GCVE-0-2025-0649)
Vulnerability from cvelistv5
Published
2025-05-06 20:20
Modified
2025-05-06 20:38
CWE
Summary
Incorrect JSON input stringification in Google's Tensorflow serving versions up to 2.18.0 allows for potentially unbounded recursion leading to server crash.
Impacted products
Vendor Product Version
Google Tensorflow Version: 0   <
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-0649",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-05-06T20:34:41.396316Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-06T20:38:57.927Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "product": "Tensorflow",
          "vendor": "Google",
          "versions": [
            {
              "lessThanOrEqual": "2.18.0",
              "status": "affected",
              "version": "0",
              "versionType": "custom"
            }
          ]
        }
      ],
      "credits": [
        {
          "lang": "en",
          "type": "finder",
          "value": "Ori Hollander of the JFrog Vulnerability Research Team"
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "Incorrect JSON input stringification\u0026nbsp;in Google\u0027s Tensorflow serving versions up to\u0026nbsp;2.18.0\u0026nbsp;allows for\u0026nbsp;potentially unbounded recursion leading to server crash."
            }
          ],
          "value": "Incorrect JSON input stringification\u00a0in Google\u0027s Tensorflow serving versions up to\u00a02.18.0\u00a0allows for\u00a0potentially unbounded recursion leading to server crash."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-100",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-100"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "Automatable": "NOT_DEFINED",
            "Recovery": "NOT_DEFINED",
            "Safety": "NOT_DEFINED",
            "attackComplexity": "LOW",
            "attackRequirements": "PRESENT",
            "attackVector": "NETWORK",
            "baseScore": 8.9,
            "baseSeverity": "HIGH",
            "privilegesRequired": "NONE",
            "providerUrgency": "NOT_DEFINED",
            "subAvailabilityImpact": "HIGH",
            "subConfidentialityImpact": "NONE",
            "subIntegrityImpact": "NONE",
            "userInteraction": "NONE",
            "valueDensity": "NOT_DEFINED",
            "vectorString": "CVSS:4.0/AV:N/AC:L/AT:P/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:H",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "NONE",
            "vulnIntegrityImpact": "NONE",
            "vulnerabilityResponseEffort": "NOT_DEFINED"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-121",
              "description": "CWE-121",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-05-06T20:20:02.345Z",
        "orgId": "14ed7db2-1595-443d-9d34-6215bf890778",
        "shortName": "Google"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/serving/commit/6cb013167d13f2ed3930aabb86dbc2c8c53f5adf"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "title": "Stack Exhaustion In Tensorflow Serving",
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "14ed7db2-1595-443d-9d34-6215bf890778",
    "assignerShortName": "Google",
    "cveId": "CVE-2025-0649",
    "datePublished": "2025-05-06T20:20:02.345Z",
    "dateReserved": "2025-01-22T15:18:16.136Z",
    "dateUpdated": "2025-05-06T20:38:57.927Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35983 (GCVE-0-2022-35983)
Vulnerability from cvelistv5
Published
2022-09-16 21:40
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. If `Save` or `SaveSlices` is run over tensors of an unsupported `dtype`, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.844Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35983",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:06.662822Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:59.888Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `Save` or `SaveSlices` is run over tensors of an unsupported `dtype`, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:40:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4"
        }
      ],
      "source": {
        "advisory": "GHSA-m6vp-8q9j-whx4",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `Save` and `SaveSlices` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35983",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `Save` and `SaveSlices` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `Save` or `SaveSlices` is run over tensors of an unsupported `dtype`, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m6vp-8q9j-whx4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35983",
    "datePublished": "2022-09-16T21:40:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:59.888Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41204 (GCVE-0-2021-41204)
Vulnerability from cvelistv5
Published
2021-11-05 20:45
Modified
2024-08-04 03:08
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow's Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.1
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.488Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow\u0027s Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:45:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659"
        }
      ],
      "source": {
        "advisory": "GHSA-786j-5qwq-r36x",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault while copying constant resource tensor",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41204",
          "STATE": "PUBLIC",
          "TITLE": "Segfault while copying constant resource tensor"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow\u0027s Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-786j-5qwq-r36x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41204",
    "datePublished": "2021-11-05T20:45:10",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.488Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41213 (GCVE-0-2021-41213)
Vulnerability from cvelistv5
Published
2021-11-05 22:10
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code behind `tf.function` API can be made to deadlock when two `tf.function` decorated Python functions are mutually recursive. This occurs due to using a non-reentrant `Lock` Python object. Loading any model which contains mutually recursive functions is vulnerable. An attacker can cause denial of service by causing users to load such models and calling a recursive `tf.function`, although this is not a frequent scenario. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.502Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the code behind `tf.function` API can be made to deadlock when two `tf.function` decorated Python functions are mutually recursive. This occurs due to using a non-reentrant `Lock` Python object. Loading any model which contains mutually recursive functions is vulnerable. An attacker can cause denial of service by causing users to load such models and calling a recursive `tf.function`, although this is not a frequent scenario. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-667",
              "description": "CWE-667: Improper Locking",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:10:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7"
        }
      ],
      "source": {
        "advisory": "GHSA-h67m-xg8f-fxcf",
        "discovery": "UNKNOWN"
      },
      "title": "Deadlock in mutually recursive `tf.function` objects",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41213",
          "STATE": "PUBLIC",
          "TITLE": "Deadlock in mutually recursive `tf.function` objects"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the code behind `tf.function` API can be made to deadlock when two `tf.function` decorated Python functions are mutually recursive. This occurs due to using a non-reentrant `Lock` Python object. Loading any model which contains mutually recursive functions is vulnerable. An attacker can cause denial of service by causing users to load such models and calling a recursive `tf.function`, although this is not a frequent scenario. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-667: Improper Locking"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h67m-xg8f-fxcf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41213",
    "datePublished": "2021-11-05T22:10:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.502Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41210 (GCVE-0-2021-41210)
Vulnerability from cvelistv5
Published
2021-11-05 20:10
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.472Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:10:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2"
        }
      ],
      "source": {
        "advisory": "GHSA-m342-ff57-4jcc",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in `tf.raw_ops.SparseCountSparseOutput`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41210",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in `tf.raw_ops.SparseCountSparseOutput`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m342-ff57-4jcc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41210",
    "datePublished": "2021-11-05T20:10:10",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.472Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41212 (GCVE-0-2021-41212)
Vulnerability from cvelistv5
Published
2021-11-05 20:15
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.357Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:15:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
        }
      ],
      "source": {
        "advisory": "GHSA-fr77-rrx3-cp7g",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in `tf.ragged.cross`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41212",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in `tf.ragged.cross`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fr77-rrx3-cp7g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41212",
    "datePublished": "2021-11-05T20:15:17",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.357Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29549 (GCVE-0-2021-29549)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.522Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:41",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16"
        }
      ],
      "source": {
        "advisory": "GHSA-x83m-p7pv-ch8v",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `QuantizedAdd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29549",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `QuantizedAdd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x83m-p7pv-ch8v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29549",
    "datePublished": "2021-05-14T19:10:41",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.522Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25666 (GCVE-0-2023-25666)
Vulnerability from cvelistv5
Published
2023-03-24 23:39
Modified
2025-02-19 20:40
CWE
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a floating point exception in AudioSpectrogram. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.261Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25666",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:40:27.852600Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:40:39.166Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a floating point exception in AudioSpectrogram. A fix is included in TensorFlow version 2.12.0 and version 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-697",
              "description": "CWE-697: Incorrect Comparison",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:39:55.696Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14"
        }
      ],
      "source": {
        "advisory": "GHSA-f637-vh3r-vfh2",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Floating Point Exception in AudioSpectrogram "
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25666",
    "datePublished": "2023-03-24T23:39:55.696Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:40:39.166Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29556 (GCVE-0-2021-29556)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.071Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:46",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1"
        }
      ],
      "source": {
        "advisory": "GHSA-fxqh-cfjm-fp93",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `Reverse`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29556",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `Reverse`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fxqh-cfjm-fp93",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29556",
    "datePublished": "2021-05-14T19:17:46",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.071Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35986 (GCVE-0-2022-35986)
Vulnerability from cvelistv5
Published
2022-09-16 21:45
Modified
2025-04-23 17:01
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.809Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35986",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:55.241187Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:35.348Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:45:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8"
        }
      ],
      "source": {
        "advisory": "GHSA-wr9v-g9vf-c74v",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `RaggedBincount` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35986",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `RaggedBincount` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wr9v-g9vf-c74v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35986",
    "datePublished": "2022-09-16T21:45:13.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:35.348Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29591 (GCVE-0-2021-29591)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
  • CWE-835 - Loop with Unreachable Exit Condition ('Infinite Loop')
Summary
TensorFlow is an end-to-end open source platform for machine learning. TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls. For example, the `While` implementation(https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/while.cc) could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling the `Eval` function for the other and this quickly exhaust all stack space. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. Please consult our security guide(https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.069Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls. For example, the `While` implementation(https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/while.cc) could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling the `Eval` function for the other and this quickly exhaust all stack space. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. Please consult our security guide(https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-835",
              "description": "CWE-835: Loop with Unreachable Exit Condition (\u0027Infinite Loop\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:29",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4"
        }
      ],
      "source": {
        "advisory": "GHSA-cwv3-863g-39vx",
        "discovery": "UNKNOWN"
      },
      "title": "Stack overflow due to looping TFLite subgraph",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29591",
          "STATE": "PUBLIC",
          "TITLE": "Stack overflow due to looping TFLite subgraph"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls. For example, the `While` implementation(https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/while.cc) could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling the `Eval` function for the other and this quickly exhaust all stack space. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. Please consult our security guide(https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-835: Loop with Unreachable Exit Condition (\u0027Infinite Loop\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cwv3-863g-39vx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29591",
    "datePublished": "2021-05-14T19:22:29",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.069Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15193 (GCVE-0-2020-15193)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-908 - {"":"Use of Uninitialized Resource"}
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.2.0
Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.677Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.2.0"
            },
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "{\"CWE-908\":\"Use of Uninitialized Resource\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-rjjg-hgv6-h69v",
        "discovery": "UNKNOWN"
      },
      "title": "Memory corruption in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15193",
          "STATE": "PUBLIC",
          "TITLE": "Memory corruption in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.2.0"
                          },
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-908\":\"Use of Uninitialized Resource\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rjjg-hgv6-h69v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15193",
    "datePublished": "2020-09-25T18:40:51",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.677Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23557 (GCVE-0-2022-23557)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:22
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would trigger a division by zero in `BiasAndClamp` implementation. There is no check that the `bias_size` is non zero. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.509Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23557",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:49:48.413137Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:22:50.565Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would trigger a division by zero in `BiasAndClamp` implementation. There is no check that the `bias_size` is non zero. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:44.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75"
        }
      ],
      "source": {
        "advisory": "GHSA-gf2j-f278-xh4v",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23557",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would trigger a division by zero in `BiasAndClamp` implementation. There is no check that the `bias_size` is non zero. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gf2j-f278-xh4v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23557",
    "datePublished": "2022-02-04T22:32:44.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:22:50.565Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23565 (GCVE-0-2022-23565)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can trigger denial of service via assertion failure by altering a `SavedModel` on disk such that `AttrDef`s of some operation are duplicated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.543Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23565",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:11:13.720663Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:40.724Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can trigger denial of service via assertion failure by altering a `SavedModel` on disk such that `AttrDef`s of some operation are duplicated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:40.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0"
        }
      ],
      "source": {
        "advisory": "GHSA-4v5p-v5h9-6xjx",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23565",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can trigger denial of service via assertion failure by altering a `SavedModel` on disk such that `AttrDef`s of some operation are duplicated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4v5p-v5h9-6xjx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23565",
    "datePublished": "2022-02-04T22:32:40.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:40.724Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21739 (GCVE-0-2022-21739)
Vulnerability from cvelistv5
Published
2022-02-03 13:13
Modified
2025-05-05 16:30
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `QuantizedMaxPool` has an undefined behavior where user controlled inputs can trigger a reference binding to null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.696Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21739",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:11.122420Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-476",
                "description": "CWE-476 NULL Pointer Dereference",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:30:56.818Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `QuantizedMaxPool` has an undefined behavior where user controlled inputs can trigger a reference binding to null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T13:13:52.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130"
        }
      ],
      "source": {
        "advisory": "GHSA-3mw4-6rj6-74g5",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21739",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `QuantizedMaxPool` has an undefined behavior where user controlled inputs can trigger a reference binding to null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3mw4-6rj6-74g5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21739",
    "datePublished": "2022-02-03T13:13:52.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:30:56.818Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29530 (GCVE-0-2021-29530)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context->status()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.410Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context-\u003estatus()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
        }
      ],
      "source": {
        "advisory": "GHSA-xcwj-wfcm-m23c",
        "discovery": "UNKNOWN"
      },
      "title": "Invalid validation in `SparseMatrixSparseCholesky`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29530",
          "STATE": "PUBLIC",
          "TITLE": "Invalid validation in `SparseMatrixSparseCholesky`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context-\u003estatus()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xcwj-wfcm-m23c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29530",
    "datePublished": "2021-05-14T19:12:17",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.410Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35989 (GCVE-0-2022-35989)
Vulnerability from cvelistv5
Published
2022-09-16 21:35
Modified
2025-04-23 17:02
CWE
Summary
TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.696Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35989",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:09.327952Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:06.652Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:35:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
        }
      ],
      "source": {
        "advisory": "GHSA-j43h-pgmg-5hjq",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `MaxPool` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35989",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `MaxPool` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j43h-pgmg-5hjq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35989",
    "datePublished": "2022-09-16T21:35:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:06.652Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23567 (GCVE-0-2022-23567)
Vulnerability from cvelistv5
Published
2022-02-03 11:52
Modified
2025-05-05 16:26
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.449Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23567",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:22.001554Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:26:32.511Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:52:48.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-rrx2-r989-2c43",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflows in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23567",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflows in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rrx2-r989-2c43",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23567",
    "datePublished": "2022-02-03T11:52:48.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:26:32.511Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41218 (GCVE-0-2021-41218)
Vulnerability from cvelistv5
Published
2021-11-05 22:05
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.519Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:05:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc"
        }
      ],
      "source": {
        "advisory": "GHSA-9crf-c6qr-r273",
        "discovery": "UNKNOWN"
      },
      "title": "Integer division by 0 in `tf.raw_ops.AllToAll`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41218",
          "STATE": "PUBLIC",
          "TITLE": "Integer division by 0 in `tf.raw_ops.AllToAll`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9crf-c6qr-r273",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41218",
    "datePublished": "2021-11-05T22:05:20",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.519Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26270 (GCVE-0-2020-26270)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
CWE
  • CWE-20 - Improper Input Validation
Summary
In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.5
Version: >= 2.0.0, < 2.0.4
Version: >= 2.1.0, < 2.1.3
Version: >= 2.2.0, < 2.2.2
Version: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:03.807Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20 Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
        }
      ],
      "source": {
        "advisory": "GHSA-m648-33qf-v3gp",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in LSTM with zero-length input in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26270",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in LSTM with zero-length input in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20 Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m648-33qf-v3gp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26270",
    "datePublished": "2020-12-10T22:10:23",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:03.807Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29580 (GCVE-0-2021-29580)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.079Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:43",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
        }
      ],
      "source": {
        "advisory": "GHSA-x8h6-xgqx-jqgp",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior and `CHECK`-fail in `FractionalMaxPoolGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29580",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior and `CHECK`-fail in `FractionalMaxPoolGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x8h6-xgqx-jqgp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29580",
    "datePublished": "2021-05-14T19:15:43",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.079Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29527 (GCVE-0-2021-29527)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.561Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:33",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b"
        }
      ],
      "source": {
        "advisory": "GHSA-x4g7-fvjj-prg8",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `QuantizedConv2D`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29527",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `QuantizedConv2D`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x4g7-fvjj-prg8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29527",
    "datePublished": "2021-05-14T19:12:33",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.561Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29519 (GCVE-0-2021-29519)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
  • CWE-843 - Access of Resource Using Incompatible Type ('Type Confusion')
Summary
TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.649Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-843",
              "description": "CWE-843: Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:58",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025"
        }
      ],
      "source": {
        "advisory": "GHSA-772j-h9xw-ffp5",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in SparseCross due to type confusion",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29519",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in SparseCross due to type confusion"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-843: Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-772j-h9xw-ffp5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29519",
    "datePublished": "2021-05-14T19:35:58",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.649Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37688 (GCVE-0-2021-37688)
Vulnerability from cvelistv5
Published
2021-08-12 22:00
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.508Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:00:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c"
        }
      ],
      "source": {
        "advisory": "GHSA-vcjj-9vg7-vf68",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37688",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vcjj-9vg7-vf68",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37688",
    "datePublished": "2021-08-12T22:00:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.508Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21725 (GCVE-0-2022-21725)
Vulnerability from cvelistv5
Published
2022-02-03 12:21
Modified
2025-05-05 16:33
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.383Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21725",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:17.845375Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-369",
                "description": "CWE-369 Divide By Zero",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:33:11.498Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:21:02.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198"
        }
      ],
      "source": {
        "advisory": "GHSA-v3f7-j968-4h5f",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21725",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v3f7-j968-4h5f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21725",
    "datePublished": "2022-02-03T12:21:02.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:33:11.498Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-35958 (GCVE-0-2021-35958)
Vulnerability from cvelistv5
Published
2021-06-30 00:12
Modified
2024-08-04 00:47
Severity ?
CWE
  • n/a
Summary
TensorFlow through 2.5.0 allows attackers to overwrite arbitrary files via a crafted archive when tf.keras.utils.get_file is used with extract=True. NOTE: the vendor's position is that tf.keras.utils.get_file is not intended for untrusted archives
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T00:47:42.583Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://vuln.ryotak.me/advisories/52"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://keras.io/api/"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow through 2.5.0 allows attackers to overwrite arbitrary files via a crafted archive when tf.keras.utils.get_file is used with extract=True. NOTE: the vendor\u0027s position is that tf.keras.utils.get_file is not intended for untrusted archives"
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-06-30T00:12:53",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://vuln.ryotak.me/advisories/52"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://keras.io/api/"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md"
        }
      ],
      "tags": [
        "disputed"
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2021-35958",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "** DISPUTED ** TensorFlow through 2.5.0 allows attackers to overwrite arbitrary files via a crafted archive when tf.keras.utils.get_file is used with extract=True. NOTE: the vendor\u0027s position is that tf.keras.utils.get_file is not intended for untrusted archives."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://vuln.ryotak.me/advisories/52",
              "refsource": "MISC",
              "url": "https://vuln.ryotak.me/advisories/52"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137"
            },
            {
              "name": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall",
              "refsource": "MISC",
              "url": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall"
            },
            {
              "name": "https://keras.io/api/",
              "refsource": "MISC",
              "url": "https://keras.io/api/"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2021-35958",
    "datePublished": "2021-06-30T00:12:53",
    "dateReserved": "2021-06-30T00:00:00",
    "dateUpdated": "2024-08-04T00:47:42.583Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37637 (GCVE-0-2021-37637)
Vulnerability from cvelistv5
Published
2021-08-12 18:15
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. It is possible to trigger a null pointer dereference in TensorFlow by passing an invalid input to `tf.raw_ops.CompressElement`. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) was accessing the size of a buffer obtained from the return of a separate function call before validating that said buffer is valid. We have patched the issue in GitHub commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.356Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. It is possible to trigger a null pointer dereference in TensorFlow by passing an invalid input to `tf.raw_ops.CompressElement`. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) was accessing the size of a buffer obtained from the return of a separate function call before validating that said buffer is valid. We have patched the issue in GitHub commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:15:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5"
        }
      ],
      "source": {
        "advisory": "GHSA-c9qf-r67m-p7cg",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `CompressElement` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37637",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `CompressElement` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. It is possible to trigger a null pointer dereference in TensorFlow by passing an invalid input to `tf.raw_ops.CompressElement`. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) was accessing the size of a buffer obtained from the return of a separate function call before validating that said buffer is valid. We have patched the issue in GitHub commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c9qf-r67m-p7cg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37637",
    "datePublished": "2021-08-12T18:15:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.356Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41222 (GCVE-0-2021-41222)
Vulnerability from cvelistv5
Published
2021-11-05 22:30
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.547Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-682",
              "description": "CWE-682: Incorrect Calculation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:30:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6"
        }
      ],
      "source": {
        "advisory": "GHSA-cpf4-wx82-gxp6",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault due to negative splits in `SplitV`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41222",
          "STATE": "PUBLIC",
          "TITLE": "Segfault due to negative splits in `SplitV`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-682: Incorrect Calculation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cpf4-wx82-gxp6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41222",
    "datePublished": "2021-11-05T22:30:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.547Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23582 (GCVE-0-2022-23582)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that `TensorByteSize` would trigger `CHECK` failures. `TensorShape` constructor throws a `CHECK`-fail if shape is partial or has a number of elements that would overflow the size of an `int`. The `PartialTensorShape` constructor instead does not cause a `CHECK`-abort if the shape is partial, which is exactly what this function needs to be able to return `-1`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.960Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23582",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:12.412383Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:15.917Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that `TensorByteSize` would trigger `CHECK` failures. `TensorShape` constructor throws a `CHECK`-fail if shape is partial or has a number of elements that would overflow the size of an `int`. The `PartialTensorShape` constructor instead does not cause a `CHECK`-abort if the shape is partial, which is exactly what this function needs to be able to return `-1`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:17.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50"
        }
      ],
      "source": {
        "advisory": "GHSA-4j82-5ccr-4r8v",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures in `TensorByteSize` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23582",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures in `TensorByteSize` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that `TensorByteSize` would trigger `CHECK` failures. `TensorShape` constructor throws a `CHECK`-fail if shape is partial or has a number of elements that would overflow the size of an `int`. The `PartialTensorShape` constructor instead does not cause a `CHECK`-abort if the shape is partial, which is exactly what this function needs to be able to return `-1`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4j82-5ccr-4r8v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23582",
    "datePublished": "2022-02-04T22:32:17.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:15.917Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35969 (GCVE-0-2022-35969)
Vulnerability from cvelistv5
Published
2022-09-16 20:45
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of `Conv2DBackpropInput` requires `input_sizes` to be 4-dimensional. Otherwise, it gives a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 50156d547b9a1da0144d7babe665cf690305b33c. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.714Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35969",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:32.885919Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:00.458Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of `Conv2DBackpropInput` requires `input_sizes` to be 4-dimensional. Otherwise, it gives a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 50156d547b9a1da0144d7babe665cf690305b33c. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:45:18.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c"
        }
      ],
      "source": {
        "advisory": "GHSA-q2c3-jpmc-gfjx",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `Conv2DBackpropInput` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35969",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `Conv2DBackpropInput` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of `Conv2DBackpropInput` requires `input_sizes` to be 4-dimensional. Otherwise, it gives a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 50156d547b9a1da0144d7babe665cf690305b33c. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q2c3-jpmc-gfjx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35969",
    "datePublished": "2022-09-16T20:45:19.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:00.458Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29586 (GCVE-0-2021-29586)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params->stride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.251Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params-\u003estride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:25",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc"
        }
      ],
      "source": {
        "advisory": "GHSA-26j7-6w8w-7922",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in optimized pooling implementations in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29586",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in optimized pooling implementations in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params-\u003estride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-26j7-6w8w-7922",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29586",
    "datePublished": "2021-05-14T19:35:25",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.251Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41898 (GCVE-0-2022-41898)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:04
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `SparseFillEmptyRowsGrad` is given empty inputs, TensorFlow will crash. We have patched the issue in GitHub commit af4a6a3c8b95022c351edae94560acc61253a1b8. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.354Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hq7g-wwwp-q46h"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/af4a6a3c8b95022c351edae94560acc61253a1b8"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse_fill_empty_rows_op_gpu.cu.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41898",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:56.622934Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:04:00.508Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `SparseFillEmptyRowsGrad` is given empty inputs, TensorFlow will crash. We have patched the issue in GitHub commit af4a6a3c8b95022c351edae94560acc61253a1b8. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hq7g-wwwp-q46h"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/af4a6a3c8b95022c351edae94560acc61253a1b8"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse_fill_empty_rows_op_gpu.cu.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-hq7g-wwwp-q46h",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail via inputs in `SparseFillEmptyRowsGrad` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41898",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:04:00.508Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-21233 (GCVE-0-2018-21233)
Vulnerability from cvelistv5
Published
2020-05-04 14:12
Modified
2024-08-05 12:26
Severity ?
CWE
  • n/a
Summary
TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T12:26:39.467Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-05-04T14:12:19",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-21233",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-21233",
    "datePublished": "2020-05-04T14:12:19",
    "dateReserved": "2020-05-04T00:00:00",
    "dateUpdated": "2024-08-05T12:26:39.467Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21728 (GCVE-0-2022-21728)
Vulnerability from cvelistv5
Published
2022-02-03 10:55
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python's negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.664Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21728",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:32.997314Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-125",
                "description": "CWE-125 Out-of-bounds Read",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:41.878Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python\u0027s negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T10:55:55.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671"
        }
      ],
      "source": {
        "advisory": "GHSA-6gmv-pjp9-p8w8",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21728",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python\u0027s negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6gmv-pjp9-p8w8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21728",
    "datePublished": "2022-02-03T10:55:55.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:41.878Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41885 (GCVE-0-2022-41885)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:06
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.FusedResizeAndPadConv2D` is given a large tensor shape, it overflows. We have patched the issue in GitHub commit d66e1d568275e6a2947de97dca7a102a211e01ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.9.0, < 2.9.1
Version: >= 2.8.0, < 2.8.1
Version: < 2.7.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.169Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-762h-vpvw-3rcx"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d66e1d568275e6a2947de97dca7a102a211e01ce"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops_fused_image_transform.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41885",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:36.319476Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:06:46.870Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.7.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.FusedResizeAndPadConv2D` is given a large tensor shape, it overflows. We have patched the issue in GitHub commit d66e1d568275e6a2947de97dca7a102a211e01ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-19T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-762h-vpvw-3rcx"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/d66e1d568275e6a2947de97dca7a102a211e01ce"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops_fused_image_transform.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-762h-vpvw-3rcx",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow in `FusedResizeAndPadConv2D` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41885",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:06:46.870Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26269 (GCVE-0-2020-26269)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
Severity ?
CWE
Summary
In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: .4.0rc*
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.075Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": ".4.0rc*"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125 Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:28",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c"
        }
      ],
      "source": {
        "advisory": "GHSA-9jjw-hf72-3mxw",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in filesystem glob matching in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26269",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds read in filesystem glob matching in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": ".4.0rc*"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125 Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9jjw-hf72-3mxw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26269",
    "datePublished": "2020-12-10T22:10:28",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.075Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29613 (GCVE-0-2021-29613)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-665 - Improper Initialization
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.117Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-665",
              "description": "CWE-665: Improper Initialization",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:33",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
        }
      ],
      "source": {
        "advisory": "GHSA-vvg4-vgrv-xfr7",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `tf.raw_ops.CTCLoss`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29613",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `tf.raw_ops.CTCLoss`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-665: Improper Initialization"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vvg4-vgrv-xfr7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29613",
    "datePublished": "2021-05-14T19:20:33",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.117Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37635 (GCVE-0-2021-37635)
Vulnerability from cvelistv5
Published
2021-08-12 20:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.255Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:30:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750"
        }
      ],
      "source": {
        "advisory": "GHSA-cgfm-62j4-v4rf",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds access in sparse reduction operations in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37635",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds access in sparse reduction operations in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cgfm-62j4-v4rf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37635",
    "datePublished": "2021-08-12T20:30:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.255Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23574 (GCVE-0-2022-23574)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. There is a typo in TensorFlow's `SpecializeType` which results in heap OOB read/write. Due to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.946Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23574",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:49.653437Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:39.476Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. There is a typo in TensorFlow\u0027s `SpecializeType` which results in heap OOB read/write. Due to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:35.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
        }
      ],
      "source": {
        "advisory": "GHSA-77gp-3h4r-6428",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read and write in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23574",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read and write in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. There is a typo in TensorFlow\u0027s `SpecializeType` which results in heap OOB read/write. Due to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-77gp-3h4r-6428",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23574",
    "datePublished": "2022-02-04T22:32:35.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:39.476Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29616 (GCVE-0-2021-29616)
Vulnerability from cvelistv5
Published
2021-05-14 19:25
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.093Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:25:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3"
        }
      ],
      "source": {
        "advisory": "GHSA-4hvv-7x94-7vq8",
        "discovery": "UNKNOWN"
      },
      "title": "Null dereference in Grappler\u0027s `TrySimplify`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29616",
          "STATE": "PUBLIC",
          "TITLE": "Null dereference in Grappler\u0027s `TrySimplify`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4hvv-7x94-7vq8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29616",
    "datePublished": "2021-05-14T19:25:27",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.093Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23576 (GCVE-0-2022-23576)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateOutputSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve tensors with large enough number of elements. We can have a large enough number of dimensions in `output_shape.dim()` or just a small number of dimensions being large enough to cause an overflow in the multiplication. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.574Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23576",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:40.440692Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:25.949Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateOutputSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve tensors with large enough number of elements. We can have a large enough number of dimensions in `output_shape.dim()` or just a small number of dimensions being large enough to cause an overflow in the multiplication. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:22.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617"
        }
      ],
      "source": {
        "advisory": "GHSA-wm93-f238-7v37",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23576",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateOutputSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve tensors with large enough number of elements. We can have a large enough number of dimensions in `output_shape.dim()` or just a small number of dimensions being large enough to cause an overflow in the multiplication. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wm93-f238-7v37",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23576",
    "datePublished": "2022-02-04T22:32:22.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:25.949Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37671 (GCVE-0-2021-37671)
Vulnerability from cvelistv5
Published
2021-08-12 21:40
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.520Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:40:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac"
        }
      ],
      "source": {
        "advisory": "GHSA-qr82-2c78-4m8h",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in map operations in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37671",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in map operations in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qr82-2c78-4m8h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37671",
    "datePublished": "2021-08-12T21:40:22",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.520Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41880 (GCVE-0-2022-41880)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:07
CWE
Summary
TensorFlow is an open source platform for machine learning. When the `BaseCandidateSamplerOp` function receives a value in `true_classes` larger than `range_max`, a heap oob read occurs. We have patched the issue in GitHub commit b389f5c944cadfdfe599b3f1e4026e036f30d2d4. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.307Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8w5g-3wcv-9g2j"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b389f5c944cadfdfe599b3f1e4026e036f30d2d4"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/candidate_sampler_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41880",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:45.750498Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:07:13.537Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When the `BaseCandidateSamplerOp` function receives a value in `true_classes` larger than `range_max`, a heap oob read occurs. We have patched the issue in GitHub commit b389f5c944cadfdfe599b3f1e4026e036f30d2d4. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8w5g-3wcv-9g2j"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/b389f5c944cadfdfe599b3f1e4026e036f30d2d4"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/candidate_sampler_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-8w5g-3wcv-9g2j",
        "discovery": "UNKNOWN"
      },
      "title": "ThreadUnsafeUnigramCandidateSampler Heap out of bounds in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41880",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:07:13.537Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41228 (GCVE-0-2021-41228)
Vulnerability from cvelistv5
Published
2021-11-05 22:25
Modified
2024-08-04 03:08
CWE
  • CWE-78 - Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's `saved_model_cli` tool is vulnerable to a code injection as it calls `eval` on user supplied strings. This can be used by attackers to run arbitrary code on the plaform where the CLI tool runs. However, given that the tool is always run manually, the impact of this is not severe. We have patched this by adding a `safe` flag which defaults to `True` and an explicit warning for users. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.343Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection as it calls `eval` on user supplied strings. This can be used by attackers to run arbitrary code on the plaform where the CLI tool runs. However, given that the tool is always run manually, the impact of this is not severe. We have patched this by adding a `safe` flag which defaults to `True` and an explicit warning for users. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "HIGH",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-78",
              "description": "CWE-78: Improper Neutralization of Special Elements used in an OS Command (\u0027OS Command Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:25:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
        }
      ],
      "source": {
        "advisory": "GHSA-3rcw-9p9x-582v",
        "discovery": "UNKNOWN"
      },
      "title": "Code injection in `saved_model_cli`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41228",
          "STATE": "PUBLIC",
          "TITLE": "Code injection in `saved_model_cli`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection as it calls `eval` on user supplied strings. This can be used by attackers to run arbitrary code on the plaform where the CLI tool runs. However, given that the tool is always run manually, the impact of this is not severe. We have patched this by adding a `safe` flag which defaults to `True` and an explicit warning for users. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "HIGH",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-78: Improper Neutralization of Special Elements used in an OS Command (\u0027OS Command Injection\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3rcw-9p9x-582v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41228",
    "datePublished": "2021-11-05T22:25:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.343Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29208 (GCVE-0-2022-29208)
Vulnerability from cvelistv5
Published
2022-05-20 22:30
Modified
2025-04-22 17:58
CWE
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.EditDistance` has incomplete validation. Users can pass negative values to cause a segmentation fault based denial of service. In multiple places throughout the code, one may compute an index for a write operation. However, the existing validation only checks against the upper bound of the array. Hence, it is possible to write before the array by massaging the input to generate negative values for `loc`. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.350Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29208",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:49.777430Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:20.112Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.EditDistance` has incomplete validation. Users can pass negative values to cause a segmentation fault based denial of service. In multiple places throughout the code, one may compute an index for a write operation. However, the existing validation only checks against the upper bound of the array. Hence, it is possible to write before the array by massaging the input to generate negative values for `loc`. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:30:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7"
        }
      ],
      "source": {
        "advisory": "GHSA-2r2f-g8mw-9gvr",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault and Out-of-bounds Write write due to incomplete validation in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29208",
          "STATE": "PUBLIC",
          "TITLE": "Segfault and Out-of-bounds Write write due to incomplete validation in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.EditDistance` has incomplete validation. Users can pass negative values to cause a segmentation fault based denial of service. In multiple places throughout the code, one may compute an index for a write operation. However, the existing validation only checks against the upper bound of the array. Hence, it is possible to write before the array by massaging the input to generate negative values for `loc`. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2r2f-g8mw-9gvr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29208",
    "datePublished": "2022-05-20T22:30:13.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:20.112Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37682 (GCVE-0-2021-37682)
Vulnerability from cvelistv5
Published
2021-08-12 22:45
Modified
2024-08-04 01:23
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.529Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:45:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538"
        }
      ],
      "source": {
        "advisory": "GHSA-4c4g-crqm-xrxw",
        "discovery": "UNKNOWN"
      },
      "title": "Use of unitialized value in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37682",
          "STATE": "PUBLIC",
          "TITLE": "Use of unitialized value in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4c4g-crqm-xrxw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37682",
    "datePublished": "2021-08-12T22:45:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.529Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29552 (GCVE-0-2021-29552)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar<T>()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.801Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar\u003cT\u003e()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:25",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe"
        }
      ],
      "source": {
        "advisory": "GHSA-jhq9-wm9m-cf89",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-failure in `UnsortedSegmentJoin`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29552",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-failure in `UnsortedSegmentJoin`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar\u003cT\u003e()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jhq9-wm9m-cf89",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29552",
    "datePublished": "2021-05-14T19:10:25",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.801Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35974 (GCVE-0-2022-35974)
Vulnerability from cvelistv5
Published
2022-09-16 21:05
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.855Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35974",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:22.276584Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:36.673Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:05:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
        }
      ],
      "source": {
        "advisory": "GHSA-vgvh-2pf4-jr2x",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizeDownAndShrinkRange` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35974",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizeDownAndShrinkRange` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vgvh-2pf4-jr2x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35974",
    "datePublished": "2022-09-16T21:05:12.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:36.673Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23588 (GCVE-0-2022-23588)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.905Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23588",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:44.636739Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:35.309Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:21.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402"
        }
      ],
      "source": {
        "advisory": "GHSA-fx5c-h9f6-rv7c",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-fails due to attempting to build a reference tensor in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23588",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-fails due to attempting to build a reference tensor in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fx5c-h9f6-rv7c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23588",
    "datePublished": "2022-02-04T22:32:21.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:35.309Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35972 (GCVE-0-2022-35972)
Vulnerability from cvelistv5
Published
2022-09-16 21:00
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedBiasAdd` is given `min_input`, `max_input`, `min_bias`, `max_bias` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.305Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35972",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:25.295516Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:43.405Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedBiasAdd` is given `min_input`, `max_input`, `min_bias`, `max_bias` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:00:19.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9"
        }
      ],
      "source": {
        "advisory": "GHSA-4pc4-m9mj-v2r9",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedBiasAdd` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35972",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedBiasAdd` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedBiasAdd` is given `min_input`, `max_input`, `min_bias`, `max_bias` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4pc4-m9mj-v2r9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35972",
    "datePublished": "2022-09-16T21:00:19.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:43.405Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35990 (GCVE-0-2022-35990)
Vulnerability from cvelistv5
Published
2022-09-16 22:00
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.863Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35990",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:52.744975Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:29.664Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:00:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
        }
      ],
      "source": {
        "advisory": "GHSA-h7ff-cfc9-wmmh",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `FakeQuantWithMinMaxVarsPerChannelGradient` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35990",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `FakeQuantWithMinMaxVarsPerChannelGradient` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h7ff-cfc9-wmmh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35990",
    "datePublished": "2022-09-16T22:00:12.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:29.664Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29539 (GCVE-0-2021-29539)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.067Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:32",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4"
        }
      ],
      "source": {
        "advisory": "GHSA-g4h2-gqm3-c9wq",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in tf.raw_ops.ImmutableConst",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29539",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in tf.raw_ops.ImmutableConst"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g4h2-gqm3-c9wq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29539",
    "datePublished": "2021-05-14T19:11:32",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.067Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35940 (GCVE-0-2022-35940)
Vulnerability from cvelistv5
Published
2022-09-16 19:45
Modified
2025-04-23 17:04
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. The `RaggedRangOp` function takes an argument `limits` that is eventually used to construct a `TensorShape` as an `int64`. If `limits` is a very large float, it can overflow when converted to an `int64`. This triggers an `InvalidArgument` but also throws an abort signal that crashes the program. We have patched the issue in GitHub commit 37cefa91bee4eace55715eeef43720b958a01192. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.069Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35940",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:04.077067Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:04.792Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `RaggedRangOp` function takes an argument `limits` that is eventually used to construct a `TensorShape` as an `int64`. If `limits` is a very large float, it can overflow when converted to an `int64`. This triggers an `InvalidArgument` but also throws an abort signal that crashes the program. We have patched the issue in GitHub commit 37cefa91bee4eace55715eeef43720b958a01192. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:45:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88"
        }
      ],
      "source": {
        "advisory": "GHSA-x989-q2pq-4q5x",
        "discovery": "UNKNOWN"
      },
      "title": "Int overflow in `RaggedRangeOp` in Tensoflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35940",
          "STATE": "PUBLIC",
          "TITLE": "Int overflow in `RaggedRangeOp` in Tensoflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `RaggedRangOp` function takes an argument `limits` that is eventually used to construct a `TensorShape` as an `int64`. If `limits` is a very large float, it can overflow when converted to an `int64`. This triggers an `InvalidArgument` but also throws an abort signal that crashes the program. We have patched the issue in GitHub commit 37cefa91bee4eace55715eeef43720b958a01192. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x989-q2pq-4q5x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35940",
    "datePublished": "2022-09-16T19:45:20.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:04.792Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35960 (GCVE-0-2022-35960)
Vulnerability from cvelistv5
Published
2022-09-16 20:00
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc's TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.580Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35960",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:55.839070Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:48.088Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc\u0027s TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:00:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
        }
      ],
      "source": {
        "advisory": "GHSA-v5xg-3q2c-c2r4",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failure in `TensorListReserve` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35960",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failure in `TensorListReserve` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc\u0027s TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v5xg-3q2c-c2r4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35960",
    "datePublished": "2022-09-16T20:00:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:48.088Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29544 (GCVE-0-2021-29544)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-10-31 20:41
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.QuantizeAndDequantizeV4Grad`. This is because the implementation does not validate the rank of the `input_*` tensors. In turn, this results in the tensors being passes as they are to `QuantizeAndDequantizePerChannelGradientImpl`. However, the `vec<T>` method, requires the rank to 1 and triggers a `CHECK` failure otherwise. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.634Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6g85-3hm8-83f9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/20431e9044cf2ad3c0323c34888b192f3289af6b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.QuantizeAndDequantizeV4Grad`. This is because the implementation does not validate the rank of the `input_*` tensors. In turn, this results in the tensors being passes as they are to `QuantizeAndDequantizePerChannelGradientImpl`. However, the `vec\u003cT\u003e` method, requires the rank to 1 and triggers a `CHECK` failure otherwise. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-10-31T20:41:21.258Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6g85-3hm8-83f9",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6g85-3hm8-83f9"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/20431e9044cf2ad3c0323c34888b192f3289af6b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/20431e9044cf2ad3c0323c34888b192f3289af6b"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L162-L163",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L162-L163"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.h#L295-L306",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.h#L295-L306"
        }
      ],
      "source": {
        "advisory": "GHSA-6g85-3hm8-83f9",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in `QuantizeAndDequantizeV4Grad`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29544",
    "datePublished": "2021-05-14T19:11:06",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-10-31T20:41:21.258Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41211 (GCVE-0-2021-41211)
Vulnerability from cvelistv5
Published
2021-11-05 20:15
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.458Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:15:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244"
        }
      ],
      "source": {
        "advisory": "GHSA-cvgx-3v3q-m36c",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in shape inference for `QuantizeV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41211",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in shape inference for `QuantizeV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cvgx-3v3q-m36c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41211",
    "datePublished": "2021-11-05T20:15:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.458Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29562 (GCVE-0-2021-29562)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.083Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2"
        }
      ],
      "source": {
        "advisory": "GHSA-36vm-xw34-x4pj",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in `tf.raw_ops.IRFFT`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29562",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in `tf.raw_ops.IRFFT`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-36vm-xw34-x4pj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29562",
    "datePublished": "2021-05-14T19:17:12",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.083Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25675 (GCVE-0-2023-25675)
Vulnerability from cvelistv5
Published
2023-03-24 23:11
Modified
2025-02-19 20:23
CWE
Summary
TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.Bincount` segfaults when given a parameter `weights` that is neither the same shape as parameter `arr` nor a length-0 tensor. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.396Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25675",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:23:26.772429Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:23:37.641Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.Bincount` segfaults when given a parameter `weights` that is neither the same shape as parameter `arr` nor a length-0 tensor. A fix is included in TensorFlow 2.12.0 and 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-697",
              "description": "CWE-697: Incorrect Comparison",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:11:30.782Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf"
        }
      ],
      "source": {
        "advisory": "GHSA-7x4v-9gxg-9hwj",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Segfault in Bincount with XLA"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25675",
    "datePublished": "2023-03-24T23:11:30.782Z",
    "dateReserved": "2023-02-09T20:58:21.859Z",
    "dateUpdated": "2025-02-19T20:23:37.641Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35998 (GCVE-0-2022-35998)
Vulnerability from cvelistv5
Published
2022-09-16 22:15
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. If `EmptyTensorList` receives an input `element_shape` with more than one dimension, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c8ba76d48567aed347508e0552a257641931024d. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.844Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35998",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:16.895083Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:15.815Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `EmptyTensorList` receives an input `element_shape` with more than one dimension, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c8ba76d48567aed347508e0552a257641931024d. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:15:23.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d"
        }
      ],
      "source": {
        "advisory": "GHSA-qhw4-wwr7-gjc5",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `EmptyTensorList` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35998",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `EmptyTensorList` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `EmptyTensorList` receives an input `element_shape` with more than one dimension, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c8ba76d48567aed347508e0552a257641931024d. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qhw4-wwr7-gjc5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35998",
    "datePublished": "2022-09-16T22:15:23.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:15.815Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29567 (GCVE-0-2021-29567)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.248Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:45",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc"
        }
      ],
      "source": {
        "advisory": "GHSA-wp3c-xw9g-gpcg",
        "discovery": "UNKNOWN"
      },
      "title": "Lack of validation in `SparseDenseCwiseMul`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29567",
          "STATE": "PUBLIC",
          "TITLE": "Lack of validation in `SparseDenseCwiseMul`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wp3c-xw9g-gpcg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29567",
    "datePublished": "2021-05-14T19:16:45",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.248Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37665 (GCVE-0-2021-37665)
Vulnerability from cvelistv5
Published
2021-08-12 22:40
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.435Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:40:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69"
        }
      ],
      "source": {
        "advisory": "GHSA-v82p-hv3v-p6qp",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in MKL requantization in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37665",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in MKL requantization in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v82p-hv3v-p6qp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37665",
    "datePublished": "2021-08-12T22:40:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.435Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25674 (GCVE-0-2023-25674)
Vulnerability from cvelistv5
Published
2023-03-24 23:13
Modified
2025-02-19 20:16
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source machine learning platform. Versions prior to 2.12.0 and 2.11.1 have a null pointer error in RandomShuffle with XLA enabled. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.393Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25674",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:16:05.996517Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:16:15.143Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source machine learning platform. Versions prior to 2.12.0 and 2.11.1 have a null pointer error in RandomShuffle with XLA enabled. A fix is included in TensorFlow 2.12.0 and 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:13:05.753Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
        }
      ],
      "source": {
        "advisory": "GHSA-gf97-q72m-7579",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Null Pointer Error in RandomShuffle with XLA enable"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25674",
    "datePublished": "2023-03-24T23:13:05.753Z",
    "dateReserved": "2023-02-09T20:58:21.859Z",
    "dateUpdated": "2025-02-19T20:16:15.143Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37664 (GCVE-0-2021-37664)
Vulnerability from cvelistv5
Published
2021-08-12 20:25
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.437Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:25:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378"
        }
      ],
      "source": {
        "advisory": "GHSA-r4c4-5fpq-56wg",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in boosted trees in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37664",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in boosted trees in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r4c4-5fpq-56wg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37664",
    "datePublished": "2021-08-12T20:25:23",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.437Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29604 (GCVE-0-2021-29604)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`'s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.082Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`\u0027s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2"
        }
      ],
      "source": {
        "advisory": "GHSA-8rm6-75mf-7r7r",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of hashtable lookup",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29604",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of hashtable lookup"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`\u0027s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8rm6-75mf-7r7r",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29604",
    "datePublished": "2021-05-14T19:21:16",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.082Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37655 (GCVE-0-2021-37655)
Vulnerability from cvelistv5
Published
2021-08-12 20:25
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.505Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:25:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f"
        }
      ],
      "source": {
        "advisory": "GHSA-7fvx-3jfc-2cpc",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in `ResourceScatterUpdate` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37655",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in `ResourceScatterUpdate` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7fvx-3jfc-2cpc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37655",
    "datePublished": "2021-08-12T20:25:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.505Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23564 (GCVE-0-2022-23564)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.543Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23564",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:11:10.236749Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:35.115Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:41.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6"
        }
      ],
      "source": {
        "advisory": "GHSA-8rcj-c8pj-v3m3",
        "discovery": "UNKNOWN"
      },
      "title": "Reachable Assertion in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23564",
          "STATE": "PUBLIC",
          "TITLE": "Reachable Assertion in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8rcj-c8pj-v3m3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23564",
    "datePublished": "2022-02-04T22:32:41.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:35.115Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29514 (GCVE-0-2021-29514)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.431Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:25",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553"
        }
      ],
      "source": {
        "advisory": "GHSA-8h46-5m9h-7553",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds write in `RaggedBinCount`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29514",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds write in `RaggedBinCount`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8h46-5m9h-7553",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29514",
    "datePublished": "2021-05-14T19:36:25",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.431Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35970 (GCVE-0-2022-35970)
Vulnerability from cvelistv5
Published
2022-09-16 20:45
Modified
2025-04-23 17:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.226Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35970",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:35.586376Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:06.335Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:45:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
        }
      ],
      "source": {
        "advisory": "GHSA-g35r-369w-3fqp",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedInstanceNorm` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35970",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedInstanceNorm` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g35r-369w-3fqp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35970",
    "datePublished": "2022-09-16T20:45:13.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:06.335Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29589 (GCVE-0-2021-29589)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.271Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:39",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d"
        }
      ],
      "source": {
        "advisory": "GHSA-3w67-q784-6w7c",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `GatherNd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29589",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `GatherNd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3w67-q784-6w7c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29589",
    "datePublished": "2021-05-14T19:22:39",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.271Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37654 (GCVE-0-2021-37654)
Vulnerability from cvelistv5
Published
2021-08-12 20:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.509Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:30:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d"
        }
      ],
      "source": {
        "advisory": "GHSA-2r8p-fg3c-wcj4",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB and CHECK fail in `ResourceGather` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37654",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB and CHECK fail in `ResourceGather` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2r8p-fg3c-wcj4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37654",
    "datePublished": "2021-08-12T20:30:23",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.509Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41208 (GCVE-0-2021-41208)
Vulnerability from cvelistv5
Published
2021-11-05 21:50
Modified
2024-08-04 03:08
CWE
  • CWE-476 - NULL Pointer Dereference
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow's boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.577Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow\u0027s boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T21:50:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c"
        }
      ],
      "source": {
        "advisory": "GHSA-57wx-m983-2f88",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in boosted trees code",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41208",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in boosted trees code"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow\u0027s boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-57wx-m983-2f88",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41208",
    "datePublished": "2021-11-05T21:50:16",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.577Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29599 (GCVE-0-2021-29599)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.267Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:43",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d"
        }
      ],
      "source": {
        "advisory": "GHSA-97wf-p777-86jq",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `Split`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29599",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `Split`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-97wf-p777-86jq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29599",
    "datePublished": "2021-05-14T19:21:43",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.267Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25667 (GCVE-0-2023-25667)
Vulnerability from cvelistv5
Published
2023-03-24 23:40
Modified
2025-02-19 20:39
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, integer overflow occurs when `2^31 <= num_frames * height * width * channels < 2^32`, for example Full HD screencast of at least 346 frames. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.265Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25667",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:39:37.472760Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:39:52.657Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, integer overflow occurs when `2^31 \u003c= num_frames * height * width * channels \u003c 2^32`, for example Full HD screencast of at least 346 frames. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:40:20.893Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d"
        }
      ],
      "source": {
        "advisory": "GHSA-fqm2-gh8w-gr68",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to segfault when opening multiframe gif"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25667",
    "datePublished": "2023-03-24T23:40:20.893Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:39:52.657Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23570 (GCVE-0-2022-23570)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.571Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23570",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:49:57.875195Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:10.226Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:42.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106"
        }
      ],
      "source": {
        "advisory": "GHSA-9p77-mmrw-69c7",
        "discovery": "UNKNOWN"
      },
      "title": "Null-dereference in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23570",
          "STATE": "PUBLIC",
          "TITLE": "Null-dereference in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9p77-mmrw-69c7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23570",
    "datePublished": "2022-02-04T22:32:42.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:10.226Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29545 (GCVE-0-2021-29545)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in converting sparse tensors to CSR Sparse matrices. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) does a double redirection to access an element of an array allocated on the heap. If the value at `indices(i, 0)` is such that `indices(i, 0) + 1` is outside the bounds of `csr_row_ptr`, this results in writing outside of bounds of heap allocated data. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.602Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in converting sparse tensors to CSR Sparse matrices. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) does a double redirection to access an element of an array allocated on the heap. If the value at `indices(i, 0)` is such that `indices(i, 0) + 1` is outside the bounds of `csr_row_ptr`, this results in writing outside of bounds of heap allocated data. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:00",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13"
        }
      ],
      "source": {
        "advisory": "GHSA-hmg3-c7xj-6qwm",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `SparseTensorToCSRSparseMatrix`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29545",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `SparseTensorToCSRSparseMatrix`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in converting sparse tensors to CSR Sparse matrices. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) does a double redirection to access an element of an array allocated on the heap. If the value at `indices(i, 0)` is such that `indices(i, 0) + 1` is outside the bounds of `csr_row_ptr`, this results in writing outside of bounds of heap allocated data. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hmg3-c7xj-6qwm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29545",
    "datePublished": "2021-05-14T19:11:00",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.602Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29602 (GCVE-0-2021-29602)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`'s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.092Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`\u0027s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:25",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0"
        }
      ],
      "source": {
        "advisory": "GHSA-rf3h-xgv5-2q39",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `DepthwiseConv`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29602",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `DepthwiseConv`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`\u0027s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rf3h-xgv5-2q39",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29602",
    "datePublished": "2021-05-14T19:21:25",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.092Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36005 (GCVE-0-2022-36005)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.861Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36005",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:28.142334Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:39.728Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:31.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm"
        }
      ],
      "source": {
        "advisory": "GHSA-r26c-679w-mrjm",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `FakeQuantWithMinMaxVarsGradient` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36005",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `FakeQuantWithMinMaxVarsGradient` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r26c-679w-mrjm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36005",
    "datePublished": "2022-09-16T22:10:31.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:39.728Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29520 (GCVE-0-2021-29520)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.327Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:54",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
        }
      ],
      "source": {
        "advisory": "GHSA-wcv5-qrj6-9pfm",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `Conv3DBackprop*`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29520",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `Conv3DBackprop*`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wcv5-qrj6-9pfm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29520",
    "datePublished": "2021-05-14T19:35:54",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.327Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41199 (GCVE-0-2021-41199)
Vulnerability from cvelistv5
Published
2021-11-05 19:55
Modified
2024-08-04 03:08
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.400Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46914"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:55:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46914"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837"
        }
      ],
      "source": {
        "advisory": "GHSA-5hx2-qx8j-qjqm",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow/crash in `tf.image.resize` when size is large",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41199",
          "STATE": "PUBLIC",
          "TITLE": "Overflow/crash in `tf.image.resize` when size is large"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46914",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46914"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5hx2-qx8j-qjqm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41199",
    "datePublished": "2021-11-05T19:55:19",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.400Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37666 (GCVE-0-2021-37666)
Vulnerability from cvelistv5
Published
2021-08-12 21:40
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.509Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:40:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612"
        }
      ],
      "source": {
        "advisory": "GHSA-w4xf-2pqw-5mq7",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in `RaggedTensorToVariant` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37666",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in `RaggedTensorToVariant` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-w4xf-2pqw-5mq7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37666",
    "datePublished": "2021-08-12T21:40:16",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.509Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15200 (GCVE-0-2020-15200)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.775Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        }
      ],
      "source": {
        "advisory": "GHSA-x7rp-74x2-mjf3",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15200",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x7rp-74x2-mjf3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15200",
    "datePublished": "2020-09-25T18:40:15",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.775Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29192 (GCVE-0-2022-29192)
Vulnerability from cvelistv5
Published
2022-05-20 20:30
Modified
2025-04-22 18:00
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:53.991Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29192",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:46.864236Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:00:33.691Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": " \u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:00:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        }
      ],
      "source": {
        "advisory": "GHSA-h2wq-prv9-2f56",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation crashes `QuantizeAndDequantizeV4Grad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29192",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation crashes `QuantizeAndDequantizeV4Grad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": " \u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h2wq-prv9-2f56",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29192",
    "datePublished": "2022-05-20T20:30:14.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:00:33.691Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29577 (GCVE-0-2021-29577)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.644Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:59",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d"
        }
      ],
      "source": {
        "advisory": "GHSA-v6r6-84gr-92rm",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `AvgPool3DGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29577",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `AvgPool3DGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v6r6-84gr-92rm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29577",
    "datePublished": "2021-05-14T19:15:59",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.644Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23573 (GCVE-0-2022-23573)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.500Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23573",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:13.377311Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:28.177Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:28.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143"
        }
      ],
      "source": {
        "advisory": "GHSA-q85f-69q7-55h2",
        "discovery": "UNKNOWN"
      },
      "title": "Uninitialized variable access in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23573",
          "STATE": "PUBLIC",
          "TITLE": "Uninitialized variable access in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q85f-69q7-55h2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23573",
    "datePublished": "2022-02-04T22:32:28.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:28.177Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29209 (GCVE-0-2022-29209)
Vulnerability from cvelistv5
Published
2022-05-20 23:25
Modified
2025-04-22 17:57
CWE
  • CWE-843 - Access of Resource Using Incompatible Type ('Type Confusion')
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.118Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/55530"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/55730"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29209",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:22.099535Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:57:07.814Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-843",
              "description": "CWE-843: Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:25:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/55530"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/55730"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h"
        }
      ],
      "source": {
        "advisory": "GHSA-f4rr-5m7v-wxcw",
        "discovery": "UNKNOWN"
      },
      "title": "Type confusion leading to `CHECK`-failure based denial of service in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29209",
          "STATE": "PUBLIC",
          "TITLE": "Type confusion leading to `CHECK`-failure based denial of service in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-843: Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/55530",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/55530"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/55730",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/pull/55730"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f4rr-5m7v-wxcw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29209",
    "datePublished": "2022-05-20T23:25:14.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:57:07.814Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36018 (GCVE-0-2022-36018)
Vulnerability from cvelistv5
Published
2022-09-16 22:05
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. If `RaggedTensorToVariant` is given a `rt_nested_splits` list that contains tensors of ranks other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.752Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36018",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:46.127887Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:17.051Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `RaggedTensorToVariant` is given a `rt_nested_splits` list that contains tensors of ranks other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:05:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821"
        }
      ],
      "source": {
        "advisory": "GHSA-m6cv-4fmf-66xf",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `RaggedTensorToVariant` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36018",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `RaggedTensorToVariant` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `RaggedTensorToVariant` is given a `rt_nested_splits` list that contains tensors of ranks other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m6cv-4fmf-66xf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36018",
    "datePublished": "2022-09-16T22:05:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:17.051Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29516 (GCVE-0-2021-29516)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.513Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93"
        }
      ],
      "source": {
        "advisory": "GHSA-84mw-34w6-2q43",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference via invalid Ragged Tensors",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29516",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference via invalid Ragged Tensors"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-84mw-34w6-2q43",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29516",
    "datePublished": "2021-05-14T19:36:16",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.513Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37669 (GCVE-0-2021-37669)
Vulnerability from cvelistv5
Published
2021-08-12 22:55
Modified
2024-08-04 01:23
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.462Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:55:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
        }
      ],
      "source": {
        "advisory": "GHSA-vmjw-c2vp-p33c",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in NMS ops caused by integer conversion to unsigned in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37669",
          "STATE": "PUBLIC",
          "TITLE": "Crash in NMS ops caused by integer conversion to unsigned in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vmjw-c2vp-p33c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37669",
    "datePublished": "2021-08-12T22:55:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.462Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37636 (GCVE-0-2021-37636)
Vulnerability from cvelistv5
Published
2021-08-12 17:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.388Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T17:30:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9"
        }
      ],
      "source": {
        "advisory": "GHSA-hp4c-x6r7-6555",
        "discovery": "UNKNOWN"
      },
      "title": "Floating point exception in `SparseDenseCwiseDiv` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37636",
          "STATE": "PUBLIC",
          "TITLE": "Floating point exception in `SparseDenseCwiseDiv` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hp4c-x6r7-6555",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37636",
    "datePublished": "2021-08-12T17:30:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.388Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36016 (GCVE-0-2022-36016)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `tensorflow::full_type::SubstituteFromAttrs` receives a `FullTypeDef& t` that is not exactly three args, it triggers a `CHECK`-fail instead of returning a status. We have patched the issue in GitHub commit 6104f0d4091c260ce9352f9155f7e9b725eab012. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.918Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36016",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:24.757939Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:33.911Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tensorflow::full_type::SubstituteFromAttrs` receives a `FullTypeDef\u0026 t` that is not exactly three args, it triggers a `CHECK`-fail instead of returning a status. We have patched the issue in GitHub commit 6104f0d4091c260ce9352f9155f7e9b725eab012. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:36.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-g468-qj8g-vcjc",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-fail in `tensorflow::full_type::SubstituteFromAttrs` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36016",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-fail in `tensorflow::full_type::SubstituteFromAttrs` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `tensorflow::full_type::SubstituteFromAttrs` receives a `FullTypeDef\u0026 t` that is not exactly three args, it triggers a `CHECK`-fail instead of returning a status. We have patched the issue in GitHub commit 6104f0d4091c260ce9352f9155f7e9b725eab012. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g468-qj8g-vcjc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36016",
    "datePublished": "2022-09-16T22:10:36.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:33.911Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25659 (GCVE-0-2023-25659)
Vulnerability from cvelistv5
Published
2023-03-24 23:43
Modified
2025-02-19 20:34
CWE
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the parameter `indices` for `DynamicStitch` does not match the shape of the parameter `data`, it can trigger an stack OOB read. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.280Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25659",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:34:25.900748Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:34:37.363Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the parameter `indices` for `DynamicStitch` does not match the shape of the parameter `data`, it can trigger an stack OOB read. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:43:26.319Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05"
        }
      ],
      "source": {
        "advisory": "GHSA-93vr-9q9m-pj8p",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to Out-of-Bounds Read in DynamicStitch"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25659",
    "datePublished": "2023-03-24T23:43:26.319Z",
    "dateReserved": "2023-02-09T20:58:21.857Z",
    "dateUpdated": "2025-02-19T20:34:37.363Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25669 (GCVE-0-2023-25669)
Vulnerability from cvelistv5
Published
2023-03-24 23:32
Modified
2025-02-19 20:33
CWE
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the stride and window size are not positive for `tf.raw_ops.AvgPoolGrad`, it can give a floating point exception. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.267Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25669",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:33:22.992564Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:33:36.588Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the stride and window size are not positive for `tf.raw_ops.AvgPoolGrad`, it can give a floating point exception. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-697",
              "description": "CWE-697: Incorrect Comparison",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:32:57.394Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d"
        }
      ],
      "source": {
        "advisory": "GHSA-rcf8-g8jv-vg6p",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Floating Point Exception in AvgPoolGrad with XLA"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25669",
    "datePublished": "2023-03-24T23:32:57.394Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:33:36.588Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29590 (GCVE-0-2021-29590)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.263Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:34",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578"
        }
      ],
      "source": {
        "advisory": "GHSA-24x6-8c7m-hv3f",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in TFLite\u0027s implementation of `Minimum` or `Maximum`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29590",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in TFLite\u0027s implementation of `Minimum` or `Maximum`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-24x6-8c7m-hv3f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29590",
    "datePublished": "2021-05-14T19:22:34",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.263Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29553 (GCVE-0-2021-29553)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can read data outside of bounds of heap allocated buffer in `tf.raw_ops.QuantizeAndDequantizeV3`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) does not validate the value of user supplied `axis` attribute before using it to index in the array backing the `input` argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.664Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can read data outside of bounds of heap allocated buffer in `tf.raw_ops.QuantizeAndDequantizeV3`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) does not validate the value of user supplied `axis` attribute before using it to index in the array backing the `input` argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387"
        }
      ],
      "source": {
        "advisory": "GHSA-h9px-9vqg-222h",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in `QuantizeAndDequantizeV3`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29553",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in `QuantizeAndDequantizeV3`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can read data outside of bounds of heap allocated buffer in `tf.raw_ops.QuantizeAndDequantizeV3`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) does not validate the value of user supplied `axis` attribute before using it to index in the array backing the `input` argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h9px-9vqg-222h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29553",
    "datePublished": "2021-05-14T19:10:20",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.664Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15211 (GCVE-0-2020-15211)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
CWE
  • CWE-125 - {"":"Out-of-bounds Read"}
  • CWE-787 - {"":"Out-of-bounds Write"}
Summary
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don't expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.936Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don\u0027t expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "{\"CWE-125\":\"Out-of-bounds Read\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "{\"CWE-787\":\"Out-of-bounds Write\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-cvpc-8phh-8f45",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds access in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15211",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds access in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don\u0027t expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-125\":\"Out-of-bounds Read\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-787\":\"Out-of-bounds Write\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cvpc-8phh-8f45",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15211",
    "datePublished": "2020-09-25T18:45:24",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.936Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35987 (GCVE-0-2022-35987)
Vulnerability from cvelistv5
Published
2022-09-16 21:40
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.874Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35987",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:57.911489Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:40.899Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:40:24.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43"
        }
      ],
      "source": {
        "advisory": "GHSA-w62h-8xjm-fv49",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `DenseBincount` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35987",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `DenseBincount` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-w62h-8xjm-fv49",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35987",
    "datePublished": "2022-09-16T21:40:24.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:40.899Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35964 (GCVE-0-2022-35964)
Vulnerability from cvelistv5
Published
2022-09-16 20:25
Modified
2025-04-23 17:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.312Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35964",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:46.954038Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:30.144Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:25:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa"
        }
      ],
      "source": {
        "advisory": "GHSA-f7r5-q7cx-h668",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `BlockLSTMGradV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35964",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `BlockLSTMGradV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f7r5-q7cx-h668",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35964",
    "datePublished": "2022-09-16T20:25:14.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:30.144Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29540 (GCVE-0-2021-29540)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.650Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:26",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
        }
      ],
      "source": {
        "advisory": "GHSA-xgc3-m89p-vr3x",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `Conv2DBackpropFilter`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29540",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `Conv2DBackpropFilter`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xgc3-m89p-vr3x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29540",
    "datePublished": "2021-05-14T19:11:26",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.650Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36027 (GCVE-0-2022-36027)
Vulnerability from cvelistv5
Published
2022-09-16 22:50
Modified
2025-04-22 17:21
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. When converting transposed convolutions using per-channel weight quantization the converter segfaults and crashes the Python process. We have patched the issue in GitHub commit aa0b852a4588cea4d36b74feb05d93055540b450. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.867Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/53767"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36027",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:16.536308Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:21:16.099Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When converting transposed convolutions using per-channel weight quantization the converter segfaults and crashes the Python process. We have patched the issue in GitHub commit aa0b852a4588cea4d36b74feb05d93055540b450. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:50:16.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/53767"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450"
        }
      ],
      "source": {
        "advisory": "GHSA-79h2-q768-fpxr",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault TFLite converter on per-channel quantized transposed convolutions in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36027",
          "STATE": "PUBLIC",
          "TITLE": "Segfault TFLite converter on per-channel quantized transposed convolutions in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When converting transposed convolutions using per-channel weight quantization the converter segfaults and crashes the Python process. We have patched the issue in GitHub commit aa0b852a4588cea4d36b74feb05d93055540b450. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/53767",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/53767"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-79h2-q768-fpxr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36027",
    "datePublished": "2022-09-16T22:50:16.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:21:16.099Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-8825 (GCVE-0-2018-8825)
Vulnerability from cvelistv5
Published
2019-04-23 20:50
Modified
2024-08-05 07:02
Severity ?
CWE
  • n/a
Summary
Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local).
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T07:02:26.166Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2018-05-31T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local)."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-23T20:50:05",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-8825",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local)."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-8825",
    "datePublished": "2019-04-23T20:50:05",
    "dateReserved": "2018-03-20T00:00:00",
    "dateUpdated": "2024-08-05T07:02:26.166Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37652 (GCVE-0-2021-37652)
Vulnerability from cvelistv5
Published
2021-08-12 21:15
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.506Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-416",
              "description": "CWE-416: Use After Free",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:15:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab"
        }
      ],
      "source": {
        "advisory": "GHSA-m7fm-4jfh-jrg6",
        "discovery": "UNKNOWN"
      },
      "title": "Use after free in boosted trees creation in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37652",
          "STATE": "PUBLIC",
          "TITLE": "Use after free in boosted trees creation in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-416: Use After Free"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m7fm-4jfh-jrg6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37652",
    "datePublished": "2021-08-12T21:15:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.506Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15204 (GCVE-0-2020-15204)
Vulnerability from cvelistv5
Published
2020-09-25 18:46
Modified
2024-08-04 13:08
CWE
  • CWE-476 - {"":"NULL Pointer Dereference"}
Summary
In eager mode, TensorFlow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1 does not set the session state. Hence, calling `tf.raw_ops.GetSessionHandle` or `tf.raw_ops.GetSessionHandleV2` results in a null pointer dereference In linked snippet, in eager mode, `ctx->session_state()` returns `nullptr`. Since code immediately dereferences this, we get a segmentation fault. The issue is patched in commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.924Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In eager mode, TensorFlow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1 does not set the session state. Hence, calling `tf.raw_ops.GetSessionHandle` or `tf.raw_ops.GetSessionHandleV2` results in a null pointer dereference In linked snippet, in eager mode, `ctx-\u003esession_state()` returns `nullptr`. Since code immediately dereferences this, we get a segmentation fault. The issue is patched in commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "{\"CWE-476\":\"NULL Pointer Dereference\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-q8gv-q7wr-9jf8",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15204",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In eager mode, TensorFlow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1 does not set the session state. Hence, calling `tf.raw_ops.GetSessionHandle` or `tf.raw_ops.GetSessionHandleV2` results in a null pointer dereference In linked snippet, in eager mode, `ctx-\u003esession_state()` returns `nullptr`. Since code immediately dereferences this, we get a segmentation fault. The issue is patched in commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-476\":\"NULL Pointer Dereference\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q8gv-q7wr-9jf8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15204",
    "datePublished": "2020-09-25T18:46:02",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.924Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35971 (GCVE-0-2022-35971)
Vulnerability from cvelistv5
Published
2022-09-16 20:50
Modified
2025-04-23 17:02
CWE
Summary
TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVars` is given `min` or `max` tensors of a nonzero rank, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.270Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35971",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:30.359821Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:54.713Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVars` is given `min` or `max` tensors of a nonzero rank, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:50:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7"
        }
      ],
      "source": {
        "advisory": "GHSA-9fpg-838v-wpv7",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `FakeQuantWithMinMaxVars` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35971",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `FakeQuantWithMinMaxVars` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVars` is given `min` or `max` tensors of a nonzero rank, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9fpg-838v-wpv7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35971",
    "datePublished": "2022-09-16T20:50:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:54.713Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41901 (GCVE-0-2022-41901)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. An input `sparse_matrix` that is not a matrix with a shape with rank 0 will trigger a `CHECK` fail in `tf.raw_ops.SparseMatrixNNZ`. We have patched the issue in GitHub commit f856d02e5322821aad155dad9b3acab1e9f5d693. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.431Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9fm-r5mm-rf9f"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f856d02e5322821aad155dad9b3acab1e9f5d693"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse/sparse_matrix.h"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41901",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:48.384621Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:03:23.623Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. An input `sparse_matrix` that is not a matrix with a shape with rank 0 will trigger a `CHECK` fail in `tf.raw_ops.SparseMatrixNNZ`. We have patched the issue in GitHub commit f856d02e5322821aad155dad9b3acab1e9f5d693. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9fm-r5mm-rf9f"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/f856d02e5322821aad155dad9b3acab1e9f5d693"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse/sparse_matrix.h"
        }
      ],
      "source": {
        "advisory": "GHSA-g9fm-r5mm-rf9f",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK_EQ` fail via input in `SparseMatrixNNZ` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41901",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:03:23.623Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37644 (GCVE-0-2021-37644)
Vulnerability from cvelistv5
Published
2021-08-12 20:35
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.306Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:35:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
        }
      ],
      "source": {
        "advisory": "GHSA-27j5-4p9v-pp67",
        "discovery": "UNKNOWN"
      },
      "title": "`std::abort` raised from `TensorListReserve` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37644",
          "STATE": "PUBLIC",
          "TITLE": "`std::abort` raised from `TensorListReserve` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-27j5-4p9v-pp67",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37644",
    "datePublished": "2021-08-12T20:35:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.306Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37647 (GCVE-0-2021-37647)
Vulnerability from cvelistv5
Published
2021-08-12 18:10
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.556Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices-\u003edim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:10:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7"
        }
      ],
      "source": {
        "advisory": "GHSA-c5x2-p679-95wc",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `SparseTensorSliceDataset` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37647",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `SparseTensorSliceDataset` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices-\u003edim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c5x2-p679-95wc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37647",
    "datePublished": "2021-08-12T18:10:27",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.556Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25664 (GCVE-0-2023-25664)
Vulnerability from cvelistv5
Published
2023-03-24 23:40
Modified
2025-02-19 20:39
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
  • CWE-122 - Heap-based Buffer Overflow
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a heap buffer overflow in TAvgPoolGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.274Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25664",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:38:56.264017Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:39:09.427Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a heap buffer overflow in TAvgPoolGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "CWE-122: Heap-based Buffer Overflow",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:40:40.590Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b"
        }
      ],
      "source": {
        "advisory": "GHSA-6hg6-5c2q-7rcr",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to Heap Buffer Overflow in AvgPoolGrad "
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25664",
    "datePublished": "2023-03-24T23:40:40.590Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:39:09.427Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23579 (GCVE-0-2022-23579)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `SafeToRemoveIdentity` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.969Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23579",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:22.336760Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:47.549Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `SafeToRemoveIdentity` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:26.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98"
        }
      ],
      "source": {
        "advisory": "GHSA-5f2r-qp73-37mr",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures during Grappler\u0027s `SafeToRemoveIdentity` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23579",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures during Grappler\u0027s `SafeToRemoveIdentity` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `SafeToRemoveIdentity` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5f2r-qp73-37mr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23579",
    "datePublished": "2022-02-04T22:32:26.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:47.549Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29592 (GCVE-0-2021-29592)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.276Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16"
        }
      ],
      "source": {
        "advisory": "GHSA-jjr8-m8g8-p6wv",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in TFLite\u0027s `Reshape` operator",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29592",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in TFLite\u0027s `Reshape` operator"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jjr8-m8g8-p6wv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29592",
    "datePublished": "2021-05-14T19:22:22",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.276Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21730 (GCVE-0-2022-21730)
Vulnerability from cvelistv5
Published
2022-02-03 10:48
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.440Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21730",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:34.896890Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-125",
                "description": "CWE-125 Out-of-bounds Read",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:22.437Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T10:48:29.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360"
        }
      ],
      "source": {
        "advisory": "GHSA-vjg4-v33c-ggc4",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21730",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vjg4-v33c-ggc4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21730",
    "datePublished": "2022-02-03T10:48:29.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:22.437Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23578 (GCVE-0-2022-23578)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-401 - Missing Release of Memory after Effective Lifetime
Summary
Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item->kernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: < 2.5.3
Version: >= 2.6.0, < 2.6.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.557Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23578",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:06.272509Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:09.382Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item-\u003ekernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-401",
              "description": "CWE-401: Missing Release of Memory after Effective Lifetime",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:30.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
        }
      ],
      "source": {
        "advisory": "GHSA-8r7c-3cm2-3h8f",
        "discovery": "UNKNOWN"
      },
      "title": "Memory leak in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23578",
          "STATE": "PUBLIC",
          "TITLE": "Memory leak in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item-\u003ekernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-401: Missing Release of Memory after Effective Lifetime"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8r7c-3cm2-3h8f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23578",
    "datePublished": "2022-02-04T22:32:30.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:09.382Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37683 (GCVE-0-2021-37683)
Vulnerability from cvelistv5
Published
2021-08-12 22:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.436Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:30:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28"
        }
      ],
      "source": {
        "advisory": "GHSA-rhrq-64mq-hf9h",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TensorFlow Lite division operations",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37683",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TensorFlow Lite division operations"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rhrq-64mq-hf9h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37683",
    "datePublished": "2021-08-12T22:30:23",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.436Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35959 (GCVE-0-2022-35959)
Vulnerability from cvelistv5
Published
2022-09-16 19:55
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of `AvgPool3DGradOp` does not fully validate the input `orig_input_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 9178ac9d6389bdc54638ab913ea0e419234d14eb. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.851Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35959",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:58.543977Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:53.520Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPool3DGradOp` does not fully validate the input `orig_input_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 9178ac9d6389bdc54638ab913ea0e419234d14eb. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:55:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb"
        }
      ],
      "source": {
        "advisory": "GHSA-wxjj-cgcx-r3vq",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failures in `AvgPool3DGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35959",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failures in `AvgPool3DGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPool3DGradOp` does not fully validate the input `orig_input_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 9178ac9d6389bdc54638ab913ea0e419234d14eb. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wxjj-cgcx-r3vq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35959",
    "datePublished": "2022-09-16T19:55:11.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:53.520Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35968 (GCVE-0-2022-35968)
Vulnerability from cvelistv5
Published
2022-09-16 20:40
Modified
2025-04-23 17:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of `AvgPoolGrad` does not fully validate the input `orig_input_shape`. This results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.379Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35968",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:38.007369Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:12.399Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPoolGrad` does not fully validate the input `orig_input_shape`. This results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:40:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25"
        }
      ],
      "source": {
        "advisory": "GHSA-2475-53vw-vp25",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `AvgPoolGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35968",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `AvgPoolGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPoolGrad` does not fully validate the input `orig_input_shape`. This results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2475-53vw-vp25",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35968",
    "datePublished": "2022-09-16T20:40:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:12.399Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35999 (GCVE-0-2022-35999)
Vulnerability from cvelistv5
Published
2022-09-16 22:15
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `Conv2DBackpropInput` receives empty `out_backprop` inputs (e.g. `[3, 1, 0, 1]`), the current CPU/GPU kernels `CHECK` fail (one with dnnl, the other with cudnn). This can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.743Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35999",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:14.238356Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:08.848Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `Conv2DBackpropInput` receives empty `out_backprop` inputs (e.g. `[3, 1, 0, 1]`), the current CPU/GPU kernels `CHECK` fail (one with dnnl, the other with cudnn). This can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:15:28.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346"
        }
      ],
      "source": {
        "advisory": "GHSA-37jf-mjv6-xfqw",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `Conv2DBackpropInput` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35999",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `Conv2DBackpropInput` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `Conv2DBackpropInput` receives empty `out_backprop` inputs (e.g. `[3, 1, 0, 1]`), the current CPU/GPU kernels `CHECK` fail (one with dnnl, the other with cudnn). This can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-37jf-mjv6-xfqw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35999",
    "datePublished": "2022-09-16T22:15:28.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:08.848Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35939 (GCVE-0-2022-35939)
Vulnerability from cvelistv5
Published
2022-09-16 19:40
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.104Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35939",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:11.985296Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:22.614Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:40:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698"
        }
      ],
      "source": {
        "advisory": "GHSA-ffjm-4qwc-7cmf",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in `scatter_nd` op in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35939",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds write in `scatter_nd` op in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-ffjm-4qwc-7cmf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35939",
    "datePublished": "2022-09-16T19:40:11.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:22.614Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37639 (GCVE-0-2021-37639)
Vulnerability from cvelistv5
Published
2021-08-12 18:10
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.249Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.4,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:10:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622"
        }
      ],
      "source": {
        "advisory": "GHSA-gh6x-4whr-2qv4",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference and heap OOB read in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37639",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference and heap OOB read in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.4,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gh6x-4whr-2qv4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37639",
    "datePublished": "2021-08-12T18:10:15",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.249Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29512 (GCVE-0-2021-29512)
Vulnerability from cvelistv5
Published
2021-05-14 18:55
Modified
2024-08-03 22:11
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >=2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.767Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e=2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T18:55:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
        }
      ],
      "source": {
        "advisory": "GHSA-4278-2v5v-65r4",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `RaggedBinCount`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29512",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `RaggedBinCount`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e=2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4278-2v5v-65r4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29512",
    "datePublished": "2021-05-14T18:55:10",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.767Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-7575 (GCVE-0-2018-7575)
Vulnerability from cvelistv5
Published
2019-04-24 20:44
Modified
2024-08-05 06:31
Severity ?
CWE
  • n/a
Summary
Google TensorFlow 1.7.x and earlier is affected by a Buffer Overflow vulnerability. The type of exploitation is context-dependent.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T06:31:04.547Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2018-05-31T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "Google TensorFlow 1.7.x and earlier is affected by a Buffer Overflow vulnerability. The type of exploitation is context-dependent."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-24T20:44:16",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-7575",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Google TensorFlow 1.7.x and earlier is affected by a Buffer Overflow vulnerability. The type of exploitation is context-dependent."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-7575",
    "datePublished": "2019-04-24T20:44:16",
    "dateReserved": "2018-02-28T00:00:00",
    "dateUpdated": "2024-08-05T06:31:04.547Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29554 (GCVE-0-2021-29554)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.254Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f"
        }
      ],
      "source": {
        "advisory": "GHSA-qg48-85hg-mqc5",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `DenseCountSparseOutput`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29554",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `DenseCountSparseOutput`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qg48-85hg-mqc5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29554",
    "datePublished": "2021-05-14T19:10:15",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.254Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29531 (GCVE-0-2021-29531)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat<T>().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.385Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat\u003cT\u003e().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1"
        }
      ],
      "source": {
        "advisory": "GHSA-3qxp-qjq7-w4hf",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in tf.raw_ops.EncodePng",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29531",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in tf.raw_ops.EncodePng"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat\u003cT\u003e().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3qxp-qjq7-w4hf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29531",
    "datePublished": "2021-05-14T19:12:12",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.385Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29202 (GCVE-0-2022-29202)
Vulnerability from cvelistv5
Published
2022-05-20 22:55
Modified
2025-04-22 17:57
CWE
  • CWE-20 - Improper Input Validation
  • CWE-400 - Uncontrolled Resource Consumption
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.ragged.constant` does not fully validate the input arguments. This results in a denial of service by consuming all available memory. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.103Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/55199"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29202",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:38.380117Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:57:48.764Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.ragged.constant` does not fully validate the input arguments. This results in a denial of service by consuming all available memory. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400: Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:55:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/55199"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239"
        }
      ],
      "source": {
        "advisory": "GHSA-cwpm-f78v-7m5c",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of service in TensorFlow due to lack of validation in `tf.ragged.constant`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29202",
          "STATE": "PUBLIC",
          "TITLE": "Denial of service in TensorFlow due to lack of validation in `tf.ragged.constant`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.ragged.constant` does not fully validate the input arguments. This results in a denial of service by consuming all available memory. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-400: Uncontrolled Resource Consumption"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/55199",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/55199"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cwpm-f78v-7m5c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29202",
    "datePublished": "2022-05-20T22:55:13.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:57:48.764Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41910 (GCVE-0-2022-41910)
Vulnerability from cvelistv5
Published
2022-12-06 00:00
Modified
2025-04-23 16:32
CWE
Summary
TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.569Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-frqp-wp83-qggv"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41910",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:53:07.273612Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:32:26.257Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-12-06T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-frqp-wp83-qggv"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
        }
      ],
      "source": {
        "advisory": "GHSA-frqp-wp83-qggv",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in `QuantizeAndDequantizeV2` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41910",
    "datePublished": "2022-12-06T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:32:26.257Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35988 (GCVE-0-2022-35988)
Vulnerability from cvelistv5
Published
2022-09-16 21:35
Modified
2025-04-23 17:02
CWE
Summary
TensorFlow is an open source platform for machine learning. When `tf.linalg.matrix_rank` receives an empty input `a`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.671Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35988",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:11.773357Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:13.410Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.linalg.matrix_rank` receives an empty input `a`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:35:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a"
        }
      ],
      "source": {
        "advisory": "GHSA-9vqj-64pv-w55c",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `tf.linalg.matrix_rank` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35988",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `tf.linalg.matrix_rank` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `tf.linalg.matrix_rank` receives an empty input `a`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9vqj-64pv-w55c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35988",
    "datePublished": "2022-09-16T21:35:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:13.410Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37681 (GCVE-0-2021-37681)
Vulnerability from cvelistv5
Published
2021-08-12 22:00
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor->is_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.508Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor-\u003eis_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:00:24",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76"
        }
      ],
      "source": {
        "advisory": "GHSA-7xwj-5r4v-429p",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer exception in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37681",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer exception in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor-\u003eis_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7xwj-5r4v-429p",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37681",
    "datePublished": "2021-08-12T22:00:24",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.508Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29204 (GCVE-0-2022-29204)
Vulnerability from cvelistv5
Published
2022-05-20 22:40
Modified
2025-04-22 17:58
CWE
  • CWE-191 - Integer Underflow (Wrap or Wraparound)
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.286Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29204",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:46.088493Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:11.932Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-191",
              "description": "CWE-191: Integer Underflow (Wrap or Wraparound)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:40:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14"
        }
      ],
      "source": {
        "advisory": "GHSA-hx9q-2mx4-m4pg",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `Conv3DBackpropFilterV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29204",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `Conv3DBackpropFilterV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-191: Integer Underflow (Wrap or Wraparound)"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hx9q-2mx4-m4pg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29204",
    "datePublished": "2022-05-20T22:40:13.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:11.932Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29588 (GCVE-0-2021-29588)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.063Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:44",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d"
        }
      ],
      "source": {
        "advisory": "GHSA-vfr4-x8j2-3rf9",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `TransposeConv`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29588",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `TransposeConv`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vfr4-x8j2-3rf9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29588",
    "datePublished": "2021-05-14T19:22:44",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.063Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29608 (GCVE-0-2021-29608)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don't prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.278Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don\u0027t prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:58",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a"
        }
      ],
      "source": {
        "advisory": "GHSA-rgvq-pcvf-hx75",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB and null pointer dereference in `RaggedTensorToTensor`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29608",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB and null pointer dereference in `RaggedTensorToTensor`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don\u0027t prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rgvq-pcvf-hx75",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29608",
    "datePublished": "2021-05-14T19:20:58",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.278Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23577 (GCVE-0-2022-23577)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.8.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.849Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23577",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:02.817092Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:59.696Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:31.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61"
        }
      ],
      "source": {
        "advisory": "GHSA-8cxv-76p7-jxwr",
        "discovery": "UNKNOWN"
      },
      "title": "Null-dereference in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23577",
          "STATE": "PUBLIC",
          "TITLE": "Null-dereference in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8cxv-76p7-jxwr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23577",
    "datePublished": "2022-02-04T22:32:31.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:59.696Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29201 (GCVE-0-2022-29201)
Vulnerability from cvelistv5
Published
2022-05-20 23:00
Modified
2025-04-22 17:57
CWE
  • CWE-20 - Improper Input Validation
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.111Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29201",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:35.544250Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:57:35.065Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:00:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-pqhm-4wvf-2jg8",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation in `QuantizedConv2D` results in undefined behavior in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29201",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation in `QuantizedConv2D` results in undefined behavior in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pqhm-4wvf-2jg8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29201",
    "datePublished": "2022-05-20T23:00:15.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:57:35.065Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25658 (GCVE-0-2023-25658)
Vulnerability from cvelistv5
Published
2023-03-24 23:42
Modified
2025-02-19 20:13
CWE
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, an out of bounds read is in GRUBlockCellGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.407Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25658",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:13:25.604996Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:13:29.872Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, an out of bounds read is in GRUBlockCellGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:42:46.482Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb"
        }
      ],
      "source": {
        "advisory": "GHSA-68v3-g9cm-rmm6",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to Out-of-Bounds Read in GRUBlockCellGrad"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25658",
    "datePublished": "2023-03-24T23:42:46.482Z",
    "dateReserved": "2023-02-09T20:58:21.857Z",
    "dateUpdated": "2025-02-19T20:13:29.872Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37677 (GCVE-0-2021-37677)
Vulnerability from cvelistv5
Published
2021-08-12 22:35
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.450Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:35:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
        }
      ],
      "source": {
        "advisory": "GHSA-qfpc-5pjr-mh26",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation in shape inference for `Dequantize` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37677",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation in shape inference for `Dequantize` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qfpc-5pjr-mh26",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37677",
    "datePublished": "2021-08-12T22:35:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.450Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23594 (GCVE-0-2022-23594)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:08
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.8.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.930Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23594",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:56:39.810788Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:08:04.448Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
        }
      ],
      "source": {
        "advisory": "GHSA-9x52-887g-fhc2",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23594",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9x52-887g-fhc2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23594",
    "datePublished": "2022-02-04T22:32:11.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:08:04.448Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29601 (GCVE-0-2021-29601)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.247Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:29",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73"
        }
      ],
      "source": {
        "advisory": "GHSA-9c84-4hx6-xmm4",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in TFLite concatentation",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29601",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in TFLite concatentation"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9c84-4hx6-xmm4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29601",
    "datePublished": "2021-05-14T19:21:29",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.247Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21736 (GCVE-0-2022-21736)
Vulnerability from cvelistv5
Published
2022-02-03 12:08
Modified
2025-05-05 16:31
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:36.116Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21736",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:19.865315Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-476",
                "description": "CWE-476 NULL Pointer Dereference",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:31:35.102Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:08:03.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292"
        }
      ],
      "source": {
        "advisory": "GHSA-pfjj-m3jj-9jc9",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21736",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pfjj-m3jj-9jc9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21736",
    "datePublished": "2022-02-03T12:08:03.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:31:35.102Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37686 (GCVE-0-2021-37686)
Vulnerability from cvelistv5
Published
2021-08-12 21:55
Modified
2024-11-13 21:20
CWE
  • CWE-835 - Loop with Unreachable Exit Condition ('Infinite Loop')
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0rc0, < 2.6.0rc2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.523Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mhhc-q96p-mfm9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0rc0, \u003c 2.6.0rc2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-835",
              "description": "CWE-835: Loop with Unreachable Exit Condition (\u0027Infinite Loop\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-11-13T21:20:48.849Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mhhc-q96p-mfm9",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mhhc-q96p-mfm9"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695"
        }
      ],
      "source": {
        "advisory": "GHSA-mhhc-q96p-mfm9",
        "discovery": "UNKNOWN"
      },
      "title": "Infinite loop in TensorFlow Lite"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37686",
    "datePublished": "2021-08-12T21:55:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-11-13T21:20:48.849Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41887 (GCVE-0-2022-41887)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:06
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: < 2.9.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.355Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41887",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:29.614034Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:06:20.833Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.9.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-19T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
        }
      ],
      "source": {
        "advisory": "GHSA-8fvv-46hw-vpg3",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow in `tf.keras.losses.poisson` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41887",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:06:20.833Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37648 (GCVE-0-2021-37648)
Vulnerability from cvelistv5
Published
2021-08-12 21:15
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.284Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:15:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986"
        }
      ],
      "source": {
        "advisory": "GHSA-wp77-4gmm-7cq8",
        "discovery": "UNKNOWN"
      },
      "title": "Incorrect validation of `SaveV2` inputs in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37648",
          "STATE": "PUBLIC",
          "TITLE": "Incorrect validation of `SaveV2` inputs in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wp77-4gmm-7cq8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37648",
    "datePublished": "2021-08-12T21:15:18",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.284Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15195 (GCVE-0-2020-15195)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.718Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:21",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-63xm-rx5p-xvqr",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15195",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-63xm-rx5p-xvqr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15195",
    "datePublished": "2020-09-25T18:40:41",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.718Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36012 (GCVE-0-2022-36012)
Vulnerability from cvelistv5
Published
2022-09-16 22:55
Modified
2025-04-23 16:58
CWE
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it crashes. We have patched the issue in GitHub commit ad069af92392efee1418c48ff561fd3070a03d7b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.629Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36012",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:42.760065Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:58:59.855Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it crashes. We have patched the issue in GitHub commit ad069af92392efee1418c48ff561fd3070a03d7b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:55:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-jvhc-5hhr-w3v5",
        "discovery": "UNKNOWN"
      },
      "title": "Assertion fail on MLIR empty edge names in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36012",
          "STATE": "PUBLIC",
          "TITLE": "Assertion fail on MLIR empty edge names in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it crashes. We have patched the issue in GitHub commit ad069af92392efee1418c48ff561fd3070a03d7b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jvhc-5hhr-w3v5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36012",
    "datePublished": "2022-09-16T22:55:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:58:59.855Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25661 (GCVE-0-2023-25661)
Vulnerability from cvelistv5
Published
2023-03-27 19:52
Modified
2025-02-19 15:26
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an Open Source Machine Learning Framework. In versions prior to 2.11.1 a malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. A proof of concept can be constructed with the `Convolution3DTranspose` function. This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services. An attacker must have privilege to provide input to a `Convolution3DTranspose` call. This issue has been patched and users are advised to upgrade to version 2.11.1. There are no known workarounds for this vulnerability.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.429Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25661",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T15:25:34.132307Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T15:26:33.556Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an Open Source Machine Learning Framework. In versions prior to 2.11.1 a malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. A proof of concept can be constructed with the `Convolution3DTranspose` function. This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services. An attacker must have privilege to provide input to a `Convolution3DTranspose` call. This issue has been patched and users are advised to upgrade to version 2.11.1. There are no known workarounds for this vulnerability."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-27T19:52:07.826Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2"
        }
      ],
      "source": {
        "advisory": "GHSA-fxgc-95xx-grvq",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in TensorFlow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25661",
    "datePublished": "2023-03-27T19:52:07.826Z",
    "dateReserved": "2023-02-09T20:58:21.857Z",
    "dateUpdated": "2025-02-19T15:26:33.556Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2019-9635 (GCVE-0-2019-9635)
Vulnerability from cvelistv5
Published
2019-04-24 16:30
Modified
2024-08-04 21:54
Severity ?
CWE
  • n/a
Summary
NULL pointer dereference in Google TensorFlow before 1.12.2 could cause a denial of service via an invalid GIF file.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T21:54:45.024Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2019-04-18T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "NULL pointer dereference in Google TensorFlow before 1.12.2 could cause a denial of service via an invalid GIF file."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-24T16:30:31",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2019-9635",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "NULL pointer dereference in Google TensorFlow before 1.12.2 could cause a denial of service via an invalid GIF file."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2019-9635",
    "datePublished": "2019-04-24T16:30:31",
    "dateReserved": "2019-03-08T00:00:00",
    "dateUpdated": "2024-08-04T21:54:45.024Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37658 (GCVE-0-2021-37658)
Vulnerability from cvelistv5
Published
2021-08-12 20:50
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.440Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:50:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b"
        }
      ],
      "source": {
        "advisory": "GHSA-6p5r-g9mq-ggh2",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in `MatrixSetDiagV*` ops in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37658",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in `MatrixSetDiagV*` ops in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-6p5r-g9mq-ggh2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37658",
    "datePublished": "2021-08-12T20:50:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.440Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29546 (GCVE-0-2021-29546)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.508Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:55",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
        }
      ],
      "source": {
        "advisory": "GHSA-m34j-p8rj-wjxq",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `QuantizedBiasAdd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29546",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `QuantizedBiasAdd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m34j-p8rj-wjxq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29546",
    "datePublished": "2021-05-14T19:10:55",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.508Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36015 (GCVE-0-2022-36015)
Vulnerability from cvelistv5
Published
2022-09-16 22:55
Modified
2025-04-23 16:58
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. When `RangeSize` receives values that do not fit into an `int64_t`, it crashes. We have patched the issue in GitHub commit 37e64539cd29fcfb814c4451152a60f5d107b0f0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.737Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36015",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:39.538513Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:58:53.732Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `RangeSize` receives values that do not fit into an `int64_t`, it crashes. We have patched the issue in GitHub commit 37e64539cd29fcfb814c4451152a60f5d107b0f0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:55:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0"
        }
      ],
      "source": {
        "advisory": "GHSA-rh87-q4vg-m45j",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in math ops in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36015",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in math ops in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `RangeSize` receives values that do not fit into an `int64_t`, it crashes. We have patched the issue in GitHub commit 37e64539cd29fcfb814c4451152a60f5d107b0f0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rh87-q4vg-m45j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36015",
    "datePublished": "2022-09-16T22:55:21.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:58:53.732Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37663 (GCVE-0-2021-37663)
Vulnerability from cvelistv5
Published
2021-08-12 22:45
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.403Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:45:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708"
        }
      ],
      "source": {
        "advisory": "GHSA-g25h-jr74-qp5j",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `QuantizeV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37663",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `QuantizeV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g25h-jr74-qp5j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37663",
    "datePublished": "2021-08-12T22:45:18",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.403Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41225 (GCVE-0-2021-41225)
Vulnerability from cvelistv5
Published
2021-11-05 22:30
Modified
2024-08-04 03:08
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.609Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:30:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
        }
      ],
      "source": {
        "advisory": "GHSA-7r94-xv9v-63jw",
        "discovery": "UNKNOWN"
      },
      "title": "A use of uninitialized value vulnerability in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41225",
          "STATE": "PUBLIC",
          "TITLE": "A use of uninitialized value vulnerability in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7r94-xv9v-63jw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41225",
    "datePublished": "2021-11-05T22:30:17",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.609Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29216 (GCVE-0-2022-29216)
Vulnerability from cvelistv5
Published
2022-05-20 23:35
Modified
2025-04-22 17:56
CWE
  • CWE-94 - Improper Control of Generation of Code ('Code Injection')
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, TensorFlow's `saved_model_cli` tool is vulnerable to a code injection. This can be used to open a reverse shell. This code path was maintained for compatibility reasons as the maintainers had several test cases where numpy expressions were used as arguments. However, given that the tool is always run manually, the impact of this is still not severe. The maintainers have now removed the `safe=False` argument, so all parsing is done without calling `eval`. The patch is available in versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.261Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29216",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:43:15.365425Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:56:38.650Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection. This can be used to open a reverse shell. This code path was maintained for compatibility reasons as the maintainers had several test cases where numpy expressions were used as arguments. However, given that the tool is always run manually, the impact of this is still not severe. The maintainers have now removed the `safe=False` argument, so all parsing is done without calling `eval`. The patch is available in versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-94",
              "description": "CWE-94: Improper Control of Generation of Code (\u0027Code Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:35:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574"
        }
      ],
      "source": {
        "advisory": "GHSA-75c9-jrh4-79mc",
        "discovery": "UNKNOWN"
      },
      "title": "Code injection in `saved_model_cli` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29216",
          "STATE": "PUBLIC",
          "TITLE": "Code injection in `saved_model_cli` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection. This can be used to open a reverse shell. This code path was maintained for compatibility reasons as the maintainers had several test cases where numpy expressions were used as arguments. However, given that the tool is always run manually, the impact of this is still not severe. The maintainers have now removed the `safe=False` argument, so all parsing is done without calling `eval`. The patch is available in versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-94: Improper Control of Generation of Code (\u0027Code Injection\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-75c9-jrh4-79mc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29216",
    "datePublished": "2022-05-20T23:35:13.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:56:38.650Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29566 (GCVE-0-2021-29566)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.286Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:51",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
        }
      ],
      "source": {
        "advisory": "GHSA-pvrc-hg3f-58r6",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB access in `Dilation2DBackpropInput`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29566",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB access in `Dilation2DBackpropInput`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pvrc-hg3f-58r6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29566",
    "datePublished": "2021-05-14T19:16:52",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.286Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37650 (GCVE-0-2021-37650)
Vulnerability from cvelistv5
Published
2021-08-12 21:00
Modified
2024-08-04 01:23
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.462Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:00:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876"
        }
      ],
      "source": {
        "advisory": "GHSA-f8h4-7rgh-q2gm",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault and heap buffer overflow in `{Experimental,}DatasetToTFRecord` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37650",
          "STATE": "PUBLIC",
          "TITLE": "Segfault and heap buffer overflow in `{Experimental,}DatasetToTFRecord` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f8h4-7rgh-q2gm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37650",
    "datePublished": "2021-08-12T21:00:13",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.462Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21732 (GCVE-0-2022-21732)
Vulnerability from cvelistv5
Published
2022-02-03 11:21
Modified
2025-02-12 15:58
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:36.139Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21732",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-01-31T17:14:02.977524Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-12T15:58:59.537Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:21:48.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
        }
      ],
      "source": {
        "advisory": "GHSA-c582-c96p-r5cq",
        "discovery": "UNKNOWN"
      },
      "title": "Memory exhaustion in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21732",
          "STATE": "PUBLIC",
          "TITLE": "Memory exhaustion in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c582-c96p-r5cq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21732",
    "datePublished": "2022-02-03T11:21:48.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-02-12T15:58:59.537Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15202 (GCVE-0-2020-15202)
Vulnerability from cvelistv5
Published
2020-09-25 18:46
Modified
2024-08-04 13:08
Severity ?
CWE
  • CWE-197 - {"":"Numeric Truncation Error"}
  • CWE-754 - {"":"Improper Check for Unusual or Exceptional Conditions"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.926Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-197",
              "description": "{\"CWE-197\":\"Numeric Truncation Error\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "{\"CWE-754\":\"Improper Check for Unusual or Exceptional Conditions\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:21",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-h6fg-mjxg-hqq4",
        "discovery": "UNKNOWN"
      },
      "title": "Integer truncation in Shard API usage",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15202",
          "STATE": "PUBLIC",
          "TITLE": "Integer truncation in Shard API usage"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-197\":\"Numeric Truncation Error\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-754\":\"Improper Check for Unusual or Exceptional Conditions\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h6fg-mjxg-hqq4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15202",
    "datePublished": "2020-09-25T18:46:15",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.926Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41201 (GCVE-0-2021-41201)
Vulnerability from cvelistv5
Published
2021-11-05 20:05
Modified
2024-08-04 03:08
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an open source platform for machine learning. In affeced versions during execution, `EinsumHelper::ParseEquation()` is supposed to set the flags in `input_has_ellipsis` vector and `*output_has_ellipsis` boolean to indicate whether there is ellipsis in the corresponding inputs and output. However, the code only changes these flags to `true` and never assigns `false`. This results in unitialized variable access if callers assume that `EinsumHelper::ParseEquation()` always sets these flags. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.506Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affeced versions during execution, `EinsumHelper::ParseEquation()` is supposed to set the flags in `input_has_ellipsis` vector and `*output_has_ellipsis` boolean to indicate whether there is ellipsis in the corresponding inputs and output. However, the code only changes these flags to `true` and never assigns `false`. This results in unitialized variable access if callers assume that `EinsumHelper::ParseEquation()` always sets these flags. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:05:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6"
        }
      ],
      "source": {
        "advisory": "GHSA-j86v-p27c-73fm",
        "discovery": "UNKNOWN"
      },
      "title": "Unitialized access in `EinsumHelper::ParseEquation`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41201",
          "STATE": "PUBLIC",
          "TITLE": "Unitialized access in `EinsumHelper::ParseEquation`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affeced versions during execution, `EinsumHelper::ParseEquation()` is supposed to set the flags in `input_has_ellipsis` vector and `*output_has_ellipsis` boolean to indicate whether there is ellipsis in the corresponding inputs and output. However, the code only changes these flags to `true` and never assigns `false`. This results in unitialized variable access if callers assume that `EinsumHelper::ParseEquation()` always sets these flags. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j86v-p27c-73fm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41201",
    "datePublished": "2021-11-05T20:05:12",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.506Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35993 (GCVE-0-2022-35993)
Vulnerability from cvelistv5
Published
2022-09-16 22:20
Modified
2025-04-23 16:59
CWE
Summary
TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.788Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35993",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:06.282801Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:47.807Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:20:25.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467"
        }
      ],
      "source": {
        "advisory": "GHSA-wq6q-6m32-9rv9",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `SetSize` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35993",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `SetSize` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wq6q-6m32-9rv9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35993",
    "datePublished": "2022-09-16T22:20:25.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:47.807Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26271 (GCVE-0-2020-26271)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
CWE
Summary
In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.5
Version: >= 2.0.0, < 2.0.4
Version: >= 2.1.0, < 2.1.3
Version: >= 2.2.0, < 2.2.2
Version: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.342Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125 Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:14",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
        }
      ],
      "source": {
        "advisory": "GHSA-q263-fvxm-m5mw",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds access in MakeEdge in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26271",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds access in MakeEdge in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125 Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q263-fvxm-m5mw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26271",
    "datePublished": "2020-12-10T22:10:14",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.342Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29200 (GCVE-0-2022-29200)
Vulnerability from cvelistv5
Published
2022-05-20 21:30
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.123Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29200",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:32.587152Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:47.129Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:30:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-2vv3-56qg-g2cf",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `LSTMBlockCell`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29200",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `LSTMBlockCell`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2vv3-56qg-g2cf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29200",
    "datePublished": "2022-05-20T21:30:14.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:47.129Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23592 (GCVE-0-2022-23592)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. TensorFlow's type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.8.0-rc0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.895Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq36-27g6-p492"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L223-L229"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23592",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:19.331849Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:35.238Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.8.0-rc0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. TensorFlow\u0027s type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-11-13T22:16:00.671Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq36-27g6-p492",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq36-27g6-p492"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L223-L229",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L223-L229"
        }
      ],
      "source": {
        "advisory": "GHSA-vq36-27g6-p492",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23592",
    "datePublished": "2022-02-04T22:32:14.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:35.238Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41226 (GCVE-0-2021-41226)
Vulnerability from cvelistv5
Published
2021-11-05 20:20
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.504Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:20:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba"
        }
      ],
      "source": {
        "advisory": "GHSA-374m-jm66-3vj8",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in `SparseBinCount`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41226",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in `SparseBinCount`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-374m-jm66-3vj8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41226",
    "datePublished": "2021-11-05T20:20:22",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.504Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36002 (GCVE-0-2022-36002)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 4419d10d576adefa36b0e0a9425d2569f7c0189f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.529Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36002",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:37.386487Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:58.965Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 4419d10d576adefa36b0e0a9425d2569f7c0189f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f"
        }
      ],
      "source": {
        "advisory": "GHSA-mh3m-62v7-68xg",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `Unbatch` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36002",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `Unbatch` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 4419d10d576adefa36b0e0a9425d2569f7c0189f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mh3m-62v7-68xg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36002",
    "datePublished": "2022-09-16T22:10:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:58.965Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35979 (GCVE-0-2022-35979)
Vulnerability from cvelistv5
Published
2022-09-16 21:10
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedRelu` or `QuantizedRelu6` are given nonscalar inputs for `min_features` or `max_features`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.270Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35979",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:19.588541Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:30.147Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedRelu` or `QuantizedRelu6` are given nonscalar inputs for `min_features` or `max_features`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:10:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x"
        }
      ],
      "source": {
        "advisory": "GHSA-v7vw-577f-vp8x",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedRelu` and `QuantizedRelu6`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35979",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedRelu` and `QuantizedRelu6`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedRelu` or `QuantizedRelu6` are given nonscalar inputs for `min_features` or `max_features`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v7vw-577f-vp8x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35979",
    "datePublished": "2022-09-16T21:10:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:30.147Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37638 (GCVE-0-2021-37638)
Vulnerability from cvelistv5
Published
2021-08-12 18:10
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.371Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:10:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314"
        }
      ],
      "source": {
        "advisory": "GHSA-hwr7-8gxx-fj5p",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `RaggedTensorToTensor` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37638",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `RaggedTensorToTensor` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hwr7-8gxx-fj5p",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37638",
    "datePublished": "2021-08-12T18:10:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.371Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35934 (GCVE-0-2022-35934)
Vulnerability from cvelistv5
Published
2022-09-16 19:30
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.038Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35934",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:20.061664Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:46.468Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:30:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555"
        }
      ],
      "source": {
        "advisory": "GHSA-f4w6-h4f5-wx45",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failure in tf.reshape in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35934",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failure in tf.reshape in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f4w6-h4f5-wx45",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35934",
    "datePublished": "2022-09-16T19:30:13.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:46.468Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25671 (GCVE-0-2023-25671)
Vulnerability from cvelistv5
Published
2023-03-24 23:31
Modified
2025-02-19 20:42
CWE
Summary
TensorFlow is an open source platform for machine learning. There is out-of-bounds access due to mismatched integer type sizes. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.404Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25671",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:42:11.368861Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:42:24.351Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. There is out-of-bounds access due to mismatched integer type sizes. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:31:40.731Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938"
        }
      ],
      "source": {
        "advisory": "GHSA-j5w9-hmfh-4cr6",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has segmentation fault in tfg-translate "
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25671",
    "datePublished": "2023-03-24T23:31:40.731Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:42:24.351Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29574 (GCVE-0-2021-29574)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.261Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
        }
      ],
      "source": {
        "advisory": "GHSA-828x-qc2p-wprq",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior in `MaxPool3DGradGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29574",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior in `MaxPool3DGradGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-828x-qc2p-wprq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29574",
    "datePublished": "2021-05-14T19:16:13",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.261Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15214 (GCVE-0-2020-15214)
Vulnerability from cvelistv5
Published
2020-09-25 18:50
Modified
2024-08-04 13:08
CWE
  • CWE-787 - {"":"Out-of-bounds Write"}
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.895Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "{\"CWE-787\":\"Out-of-bounds Write\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:50:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
        }
      ],
      "source": {
        "advisory": "GHSA-p2cq-cprg-frvm",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15214",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds write in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-787\":\"Out-of-bounds Write\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p2cq-cprg-frvm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15214",
    "datePublished": "2020-09-25T18:50:23",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.895Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29523 (GCVE-0-2021-29523)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.126Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:39",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6"
        }
      ],
      "source": {
        "advisory": "GHSA-2cpx-427x-q2c6",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in AddManySparseToTensorsMap",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29523",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in AddManySparseToTensorsMap"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2cpx-427x-q2c6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29523",
    "datePublished": "2021-05-14T19:35:39",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.126Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23566 (GCVE-0-2022-23566)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:23
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. TensorFlow is vulnerable to a heap OOB write in `Grappler`. The `set_output` function writes to an array at the specified index. Hence, this gives a malicious user a write primitive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.603Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23566",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:44:54.464785Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:23:48.670Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. TensorFlow is vulnerable to a heap OOB write in `Grappler`. The `set_output` function writes to an array at the specified index. Hence, this gives a malicious user a write primitive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:33.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141"
        }
      ],
      "source": {
        "advisory": "GHSA-5qw5-89mw-wcg2",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23566",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds write in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. TensorFlow is vulnerable to a heap OOB write in `Grappler`. The `set_output` function writes to an array at the specified index. Hence, this gives a malicious user a write primitive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5qw5-89mw-wcg2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23566",
    "datePublished": "2022-02-04T22:32:33.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:23:48.670Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37679 (GCVE-0-2021-37679)
Vulnerability from cvelistv5
Published
2021-08-12 22:20
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.507Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:20:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12"
        }
      ],
      "source": {
        "advisory": "GHSA-g8wg-cjwc-xhhp",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in nested `tf.map_fn` with `RaggedTensor`s in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37679",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in nested `tf.map_fn` with `RaggedTensor`s in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g8wg-cjwc-xhhp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37679",
    "datePublished": "2021-08-12T22:20:16",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.507Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23562 (GCVE-0-2022-23562)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `Range` suffers from integer overflows. These can trigger undefined behavior or, in some scenarios, extremely large allocations. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.582Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/51733"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/52676"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23562",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:11:16.455709Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:46.214Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Range` suffers from integer overflows. These can trigger undefined behavior or, in some scenarios, extremely large allocations. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:39.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/51733"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/52676"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732"
        }
      ],
      "source": {
        "advisory": "GHSA-qx3f-p745-w4hr",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23562",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Range` suffers from integer overflows. These can trigger undefined behavior or, in some scenarios, extremely large allocations. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/51733",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/pull/51733"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/52676",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/52676"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qx3f-p745-w4hr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23562",
    "datePublished": "2022-02-04T22:32:39.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:46.214Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15194 (GCVE-0-2020-15194)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-617 - {"":"Reachable Assertion"}
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.713Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\""
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "{\"CWE-617\":\"Reachable Assertion\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-9mqp-7v2h-2382",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15194",
          "STATE": "PUBLIC",
          "TITLE": "Denial of Service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\""
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-617\":\"Reachable Assertion\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9mqp-7v2h-2382",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15194",
    "datePublished": "2020-09-25T18:40:46",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.713Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41911 (GCVE-0-2022-41911)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-23 16:36
CWE
  • CWE-704 - Incorrect Type Conversion or Cast
Summary
TensorFlow is an open source platform for machine learning. When printing a tensor, we get it's data as a `const char*` array (since that's the underlying storage) and then we typecast it to the element type. However, conversions from `char` to `bool` are undefined if the `char` is not `0` or `1`, so sanitizers/fuzzers will crash. The issue has been patched in GitHub commit `1be74370327`. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.10.1, TensorFlow 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.549Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pf36-r9c6-h97j"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1be743703279782a357adbf9b77dcb994fe8b508"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/807cae8a807960fd7ac2313cde73a11fc15e7942/tensorflow/core/framework/tensor.cc#L1200-L1227"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41911",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:54:15.660139Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:36:49.951Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When printing a tensor, we get it\u0027s data as a `const char*` array (since that\u0027s the underlying storage) and then we typecast it to the element type. However, conversions from `char` to `bool` are undefined if the `char` is not `0` or `1`, so sanitizers/fuzzers will crash. The issue has been patched in GitHub commit `1be74370327`. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.10.1, TensorFlow 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-704",
              "description": "CWE-704: Incorrect Type Conversion or Cast",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pf36-r9c6-h97j"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/1be743703279782a357adbf9b77dcb994fe8b508"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/807cae8a807960fd7ac2313cde73a11fc15e7942/tensorflow/core/framework/tensor.cc#L1200-L1227"
        }
      ],
      "source": {
        "advisory": "GHSA-pf36-r9c6-h97j",
        "discovery": "UNKNOWN"
      },
      "title": "Invalid char to bool conversion when printing a tensor in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41911",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:36:49.951Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29610 (GCVE-0-2021-29610)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-665 - Improper Initialization
Summary
TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ < -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.104Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ \u003c -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-665",
              "description": "CWE-665: Improper Initialization",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:47",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
        }
      ],
      "source": {
        "advisory": "GHSA-mq5c-prh3-3f3h",
        "discovery": "UNKNOWN"
      },
      "title": "Invalid validation in `QuantizeAndDequantizeV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29610",
          "STATE": "PUBLIC",
          "TITLE": "Invalid validation in `QuantizeAndDequantizeV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ \u003c -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-665: Improper Initialization"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mq5c-prh3-3f3h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29610",
    "datePublished": "2021-05-14T19:20:47",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.104Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23590 (GCVE-0-2022-23590)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:27
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
Tensorflow is an Open Source Machine Learning Framework. A `GraphDef` from a TensorFlow `SavedModel` can be maliciously altered to cause a TensorFlow process to crash due to encountering a `StatusOr` value that is an error and forcibly extracting the value from it. We have patched the issue in multiple GitHub commits and these will be included in TensorFlow 2.8.0 and TensorFlow 2.7.1, as both are affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.8.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.906Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23590",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:26.207010Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:27:03.523Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A `GraphDef` from a TensorFlow `SavedModel` can be maliciously altered to cause a TensorFlow process to crash due to encountering a `StatusOr` value that is an error and forcibly extracting the value from it. We have patched the issue in multiple GitHub commits and these will be included in TensorFlow 2.8.0 and TensorFlow 2.7.1, as both are affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567"
        }
      ],
      "source": {
        "advisory": "GHSA-pqrv-8r2f-7278",
        "discovery": "UNKNOWN"
      },
      "title": "Crash due to erroneous `StatusOr` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23590",
          "STATE": "PUBLIC",
          "TITLE": "Crash due to erroneous `StatusOr` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A `GraphDef` from a TensorFlow `SavedModel` can be maliciously altered to cause a TensorFlow process to crash due to encountering a `StatusOr` value that is an error and forcibly extracting the value from it. We have patched the issue in multiple GitHub commits and these will be included in TensorFlow 2.8.0 and TensorFlow 2.7.1, as both are affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pqrv-8r2f-7278",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23590",
    "datePublished": "2022-02-04T22:32:10.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:27:03.523Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29593 (GCVE-0-2021-29593)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.253Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044"
        }
      ],
      "source": {
        "advisory": "GHSA-cfx7-2xpc-8w4h",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `BatchToSpaceNd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29593",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `BatchToSpaceNd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cfx7-2xpc-8w4h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29593",
    "datePublished": "2021-05-14T19:22:17",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.253Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23571 (GCVE-0-2022-23571)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:07
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.554Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23571",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:11:18.959656Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:07:57.657Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:34.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3"
        }
      ],
      "source": {
        "advisory": "GHSA-j3mj-fhpq-qqjj",
        "discovery": "UNKNOWN"
      },
      "title": "Reachable Assertion in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23571",
          "STATE": "PUBLIC",
          "TITLE": "Reachable Assertion in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j3mj-fhpq-qqjj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23571",
    "datePublished": "2022-02-04T22:32:34.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:07:57.657Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41220 (GCVE-0-2021-41220)
Vulnerability from cvelistv5
Published
2021-11-05 22:20
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the async implementation of `CollectiveReduceV2` suffers from a memory leak and a use after free. This occurs due to the asynchronous computation and the fact that objects that have been `std::move()`d from are still accessed. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.404Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the async implementation of `CollectiveReduceV2` suffers from a memory leak and a use after free. This occurs due to the asynchronous computation and the fact that objects that have been `std::move()`d from are still accessed. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-416",
              "description": "CWE-416: Use After Free",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:20:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75"
        }
      ],
      "source": {
        "advisory": "GHSA-gpfh-jvf9-7wg5",
        "discovery": "UNKNOWN"
      },
      "title": "Use after free in `CollectiveReduceV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41220",
          "STATE": "PUBLIC",
          "TITLE": "Use after free in `CollectiveReduceV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the async implementation of `CollectiveReduceV2` suffers from a memory leak and a use after free. This occurs due to the asynchronous computation and the fact that objects that have been `std::move()`d from are still accessed. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-416: Use After Free"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gpfh-jvf9-7wg5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41220",
    "datePublished": "2021-11-05T22:20:12",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.404Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35996 (GCVE-0-2022-35996)
Vulnerability from cvelistv5
Published
2022-09-16 22:55
Modified
2025-04-23 16:59
CWE
Summary
TensorFlow is an open source platform for machine learning. If `Conv2D` is given empty `input` and the `filter` and `padding` sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.680Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35996",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:45.697455Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:06.532Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `Conv2D` is given empty `input` and the `filter` and `padding` sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:55:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9"
        }
      ],
      "source": {
        "advisory": "GHSA-q5jv-m6qw-5g37",
        "discovery": "UNKNOWN"
      },
      "title": "Floating point exception in `Conv2D` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35996",
          "STATE": "PUBLIC",
          "TITLE": "Floating point exception in `Conv2D` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `Conv2D` is given empty `input` and the `filter` and `padding` sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q5jv-m6qw-5g37",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35996",
    "datePublished": "2022-09-16T22:55:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:06.532Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29538 (GCVE-0-2021-29538)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.489Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp"
        }
      ],
      "source": {
        "advisory": "GHSA-j8qc-5fqr-52fp",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in `Conv2DBackpropFilter`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29538",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in `Conv2DBackpropFilter`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j8qc-5fqr-52fp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29538",
    "datePublished": "2021-05-14T19:11:36",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.489Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15265 (GCVE-0-2020-15265)
Vulnerability from cvelistv5
Published
2020-10-21 20:20
Modified
2024-08-04 13:15
CWE
Summary
In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.4.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:15:19.748Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/42105"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.4.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125 Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-21T20:20:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/42105"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
        }
      ],
      "source": {
        "advisory": "GHSA-rrfp-j2mp-hq9c",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15265",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.4.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125 Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/42105",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/42105"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rrfp-j2mp-hq9c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15265",
    "datePublished": "2020-10-21T20:20:15",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:15:19.748Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25668 (GCVE-0-2023-25668)
Vulnerability from cvelistv5
Published
2023-03-24 23:33
Modified
2025-02-19 20:32
Severity ?
CWE
Summary
TensorFlow is an open source platform for machine learning. Attackers using Tensorflow prior to 2.12.0 or 2.11.1 can access heap memory which is not in the control of user, leading to a crash or remote code execution. The fix will be included in TensorFlow version 2.12.0 and will also cherrypick this commit on TensorFlow version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.348Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25668",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:32:32.556614Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:32:48.754Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Attackers using Tensorflow prior to 2.12.0 or 2.11.1 can access heap memory which is not in the control of user, leading to a crash or remote code execution. The fix will be included in TensorFlow version 2.12.0 and will also cherrypick this commit on TensorFlow version 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9.8,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "CWE-122: Heap-based Buffer Overflow",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:33:50.296Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb"
        }
      ],
      "source": {
        "advisory": "GHSA-gw97-ff7c-9v96",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to heap out-of-buffer read in the QuantizeAndDequantize operation"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25668",
    "datePublished": "2023-03-24T23:33:50.296Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:32:48.754Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15203 (GCVE-0-2020-15203)
Vulnerability from cvelistv5
Published
2020-09-25 18:46
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, by controlling the `fill` argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed. This may result in segmentation fault. The issue is patched in commit 33be22c65d86256e6826666662e40dbdfe70ee83, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.972Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, by controlling the `fill` argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed. This may result in segmentation fault. The issue is patched in commit 33be22c65d86256e6826666662e40dbdfe70ee83, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-xmq7-7fxm-rr79",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15203",
          "STATE": "PUBLIC",
          "TITLE": "Denial of Service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, by controlling the `fill` argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed. This may result in segmentation fault. The issue is patched in commit 33be22c65d86256e6826666662e40dbdfe70ee83, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xmq7-7fxm-rr79",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15203",
    "datePublished": "2020-09-25T18:46:08",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.972Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29536 (GCVE-0-2021-29536)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.449Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:46",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
        }
      ],
      "source": {
        "advisory": "GHSA-2gfx-95x2-5v3x",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `QuantizedReshape`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29536",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `QuantizedReshape`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2gfx-95x2-5v3x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29536",
    "datePublished": "2021-05-14T19:11:46",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.449Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26267 (GCVE-0-2020-26267)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
CWE
Summary
In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.5
Version: >= 2.0.0, < 2.0.4
Version: >= 2.1.0, < 2.1.3
Version: >= 2.2.0, < 2.2.2
Version: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.539Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125 Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:40",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae"
        }
      ],
      "source": {
        "advisory": "GHSA-c9f3-9wfr-wgh7",
        "discovery": "UNKNOWN"
      },
      "title": "Lack of validation in data format attributes in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26267",
          "STATE": "PUBLIC",
          "TITLE": "Lack of validation in data format attributes in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125 Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c9f3-9wfr-wgh7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26267",
    "datePublished": "2020-12-10T22:10:40",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.539Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35991 (GCVE-0-2022-35991)
Vulnerability from cvelistv5
Published
2022-09-16 22:20
Modified
2025-04-23 16:59
CWE
Summary
TensorFlow is an open source platform for machine learning. When `TensorListScatter` and `TensorListScatterV2` receive an `element_shape` of a rank greater than one, they give a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.552Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35991",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:11.696398Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:59.552Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `TensorListScatter` and `TensorListScatterV2` receive an `element_shape` of a rank greater than one, they give a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:20:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61"
        }
      ],
      "source": {
        "advisory": "GHSA-vm7x-4qhj-rrcq",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `TensorListScatter` and `TensorListScatterV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35991",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `TensorListScatter` and `TensorListScatterV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `TensorListScatter` and `TensorListScatterV2` receive an `element_shape` of a rank greater than one, they give a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vm7x-4qhj-rrcq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35991",
    "datePublished": "2022-09-16T22:20:16.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:59.552Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15199 (GCVE-0-2020-15199)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.934Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h"
        }
      ],
      "source": {
        "advisory": "GHSA-x5cp-9pcf-pp3h",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15199",
          "STATE": "PUBLIC",
          "TITLE": "Denial of Service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x5cp-9pcf-pp3h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15199",
    "datePublished": "2020-09-25T18:40:20",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.934Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29198 (GCVE-0-2022-29198)
Vulnerability from cvelistv5
Published
2022-05-20 21:50
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.186Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29198",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:26.445400Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:29.034Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:50:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119"
        }
      ],
      "source": {
        "advisory": "GHSA-mg66-qvc5-rm93",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `SparseTensorToCSRSparseMatrix`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29198",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `SparseTensorToCSRSparseMatrix`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mg66-qvc5-rm93",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29198",
    "datePublished": "2022-05-20T21:50:12.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:29.034Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37672 (GCVE-0-2021-37672)
Vulnerability from cvelistv5
Published
2021-08-12 22:20
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.434Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:20:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6"
        }
      ],
      "source": {
        "advisory": "GHSA-5hj3-vjjf-f5m7",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in `SdcaOptimizerV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37672",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in `SdcaOptimizerV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5hj3-vjjf-f5m7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37672",
    "datePublished": "2021-08-12T22:20:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.434Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25801 (GCVE-0-2023-25801)
Vulnerability from cvelistv5
Published
2023-03-24 23:08
Modified
2025-02-19 20:44
CWE
Summary
TensorFlow is an open source machine learning platform. Prior to versions 2.12.0 and 2.11.1, `nn_ops.fractional_avg_pool_v2` and `nn_ops.fractional_max_pool_v2` require the first and fourth elements of their parameter `pooling_ratio` to be equal to 1.0, as pooling on batch and channel dimensions is not supported. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:32:12.391Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25801",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:44:21.366840Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:44:31.150Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source machine learning platform. Prior to versions 2.12.0 and 2.11.1, `nn_ops.fractional_avg_pool_v2` and `nn_ops.fractional_max_pool_v2` require the first and fourth elements of their parameter `pooling_ratio` to be equal to 1.0, as pooling on batch and channel dimensions is not supported. A fix is included in TensorFlow 2.12.0 and 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-415",
              "description": "CWE-415: Double Free",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:08:50.251Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307"
        }
      ],
      "source": {
        "advisory": "GHSA-f49c-87jh-g47q",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has double free in Fractional(Max/Avg)Pool"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25801",
    "datePublished": "2023-03-24T23:08:50.251Z",
    "dateReserved": "2023-02-15T16:34:48.771Z",
    "dateUpdated": "2025-02-19T20:44:31.150Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29581 (GCVE-0-2021-29581)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-908 - Use of Uninitialized Resource
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.850Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:38",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e"
        }
      ],
      "source": {
        "advisory": "GHSA-vq2r-5xvm-3hc3",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `CTCBeamSearchDecoder`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29581",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `CTCBeamSearchDecoder`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vq2r-5xvm-3hc3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29581",
    "datePublished": "2021-05-14T19:15:38",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.850Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35981 (GCVE-0-2022-35981)
Vulnerability from cvelistv5
Published
2022-09-16 21:15
Modified
2025-04-23 17:02
CWE
Summary
TensorFlow is an open source platform for machine learning. `FractionalMaxPoolGrad` validates its inputs with `CHECK` failures instead of with returning errors. If it gets incorrectly sized inputs, the `CHECK` failure can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 8741e57d163a079db05a7107a7609af70931def4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.677Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35981",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:17.016769Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:24.602Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. `FractionalMaxPoolGrad` validates its inputs with `CHECK` failures instead of with returning errors. If it gets incorrectly sized inputs, the `CHECK` failure can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 8741e57d163a079db05a7107a7609af70931def4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:15:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4"
        }
      ],
      "source": {
        "advisory": "GHSA-vxv8-r8q2-63xw",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `FractionalMaxPoolGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35981",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `FractionalMaxPoolGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. `FractionalMaxPoolGrad` validates its inputs with `CHECK` failures instead of with returning errors. If it gets incorrectly sized inputs, the `CHECK` failure can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 8741e57d163a079db05a7107a7609af70931def4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vxv8-r8q2-63xw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35981",
    "datePublished": "2022-09-16T21:15:12.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:24.602Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15207 (GCVE-0-2020-15207)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
CWE
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python's indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.887Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python\u0027s indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-q4qf-3fc6-8x34",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault and data corruption in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15207",
          "STATE": "PUBLIC",
          "TITLE": "Segfault and data corruption in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python\u0027s indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q4qf-3fc6-8x34",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15207",
    "datePublished": "2020-09-25T18:45:46",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.887Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37651 (GCVE-0-2021-37651)
Vulnerability from cvelistv5
Published
2021-08-12 21:00
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.436Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:00:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
        }
      ],
      "source": {
        "advisory": "GHSA-hpv4-7p9c-mvfr",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `FractionalAvgPoolGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37651",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `FractionalAvgPoolGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hpv4-7p9c-mvfr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37651",
    "datePublished": "2021-08-12T21:00:19",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.436Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29203 (GCVE-0-2022-29203)
Vulnerability from cvelistv5
Published
2022-05-20 22:50
Modified
2025-04-22 17:58
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.162Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29203",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:42.511586Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:03.254Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:50:11.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf"
        }
      ],
      "source": {
        "advisory": "GHSA-jjm6-4vf7-cjh4",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in `SpaceToBatchND` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29203",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in `SpaceToBatchND` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jjm6-4vf7-cjh4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29203",
    "datePublished": "2022-05-20T22:50:11.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:03.254Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29564 (GCVE-0-2021-29564)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.243Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:01",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3"
        }
      ],
      "source": {
        "advisory": "GHSA-75f6-78jr-4656",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `EditDistance`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29564",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `EditDistance`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-75f6-78jr-4656",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29564",
    "datePublished": "2021-05-14T19:17:01",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.243Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29572 (GCVE-0-2021-29572)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.040Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb"
        }
      ],
      "source": {
        "advisory": "GHSA-5gqf-456p-4836",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in `SdcaOptimizer`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29572",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in `SdcaOptimizer`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5gqf-456p-4836",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29572",
    "datePublished": "2021-05-14T19:16:23",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.040Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41198 (GCVE-0-2021-41198)
Vulnerability from cvelistv5
Published
2021-11-05 19:55
Modified
2024-08-04 03:08
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.248Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46911"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:55:26",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46911"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f"
        }
      ],
      "source": {
        "advisory": "GHSA-2p25-55c9-h58q",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow/crash in `tf.tile` when tiling tensor is large",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41198",
          "STATE": "PUBLIC",
          "TITLE": "Overflow/crash in `tf.tile` when tiling tensor is large"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46911",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46911"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2p25-55c9-h58q",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41198",
    "datePublished": "2021-11-05T19:55:26",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.248Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36000 (GCVE-0-2022-36000)
Vulnerability from cvelistv5
Published
2022-09-16 22:30
Modified
2025-04-23 16:59
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit aed36912609fc07229b4d0a7b44f3f48efc00fd0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.697Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36000",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:54.810419Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:23.193Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit aed36912609fc07229b4d0a7b44f3f48efc00fd0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:30:25.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0"
        }
      ],
      "source": {
        "advisory": "GHSA-fqxc-pvf8-2w9v",
        "discovery": "UNKNOWN"
      },
      "title": "Null dereference on MLIR on empty function attributes in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36000",
          "STATE": "PUBLIC",
          "TITLE": "Null dereference on MLIR on empty function attributes in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit aed36912609fc07229b4d0a7b44f3f48efc00fd0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fqxc-pvf8-2w9v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36000",
    "datePublished": "2022-09-16T22:30:25.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:23.193Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41890 (GCVE-0-2022-41890)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:05
CWE
  • CWE-704 - Incorrect Type Conversion or Cast
Summary
TensorFlow is an open source platform for machine learning. If `BCast::ToShape` is given input larger than an `int32`, it will crash, despite being supposed to handle up to an `int64`. An example can be seen in `tf.experimental.numpy.outer` by passing in large input to the input `b`. We have patched the issue in GitHub commit 8310bf8dd188ff780e7fc53245058215a05bdbe5. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.356Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h246-cgh4-7475"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8310bf8dd188ff780e7fc53245058215a05bdbe5"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/bcast.h"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41890",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:20.461794Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:05:33.026Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `BCast::ToShape` is given input larger than an `int32`, it will crash, despite being supposed to handle up to an `int64`. An example can be seen in `tf.experimental.numpy.outer` by passing in large input to the input `b`. We have patched the issue in GitHub commit 8310bf8dd188ff780e7fc53245058215a05bdbe5. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-704",
              "description": "CWE-704: Incorrect Type Conversion or Cast",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h246-cgh4-7475"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/8310bf8dd188ff780e7fc53245058215a05bdbe5"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/bcast.h"
        }
      ],
      "source": {
        "advisory": "GHSA-h246-cgh4-7475",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `BCast` overflow in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41890",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:05:33.026Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29584 (GCVE-0-2021-29584)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.088Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
        }
      ],
      "source": {
        "advisory": "GHSA-xvjm-fvxx-q3hv",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail due to integer overflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29584",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail due to integer overflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xvjm-fvxx-q3hv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29584",
    "datePublished": "2021-05-14T19:15:22",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.088Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21729 (GCVE-0-2022-21729)
Vulnerability from cvelistv5
Published
2022-02-03 12:28
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.514Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21729",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:16.054510Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:32.350Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:28:25.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135"
        }
      ],
      "source": {
        "advisory": "GHSA-34f9-hjfq-rr8j",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow and uncaught divide by zero in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21729",
          "STATE": "PUBLIC",
          "TITLE": "Overflow and uncaught divide by zero in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-34f9-hjfq-rr8j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21729",
    "datePublished": "2022-02-03T12:28:25.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:32.350Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35937 (GCVE-0-2022-35937)
Vulnerability from cvelistv5
Published
2022-09-16 19:40
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read is triggered. This issue has been patched in GitHub commit 595a65a3e224a0362d7e68c2213acfc2b499a196. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.208Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35937",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:09.350683Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:16.104Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read is triggered. This issue has been patched in GitHub commit 595a65a3e224a0362d7e68c2213acfc2b499a196. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:40:19.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111"
        }
      ],
      "source": {
        "advisory": "GHSA-pxrw-j2fv-hx3h",
        "discovery": "UNKNOWN"
      },
      "title": "OOB read in `Gather_nd` op in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35937",
          "STATE": "PUBLIC",
          "TITLE": "OOB read in `Gather_nd` op in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read is triggered. This issue has been patched in GitHub commit 595a65a3e224a0362d7e68c2213acfc2b499a196. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pxrw-j2fv-hx3h",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35937",
    "datePublished": "2022-09-16T19:40:20.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:16.104Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25670 (GCVE-0-2023-25670)
Vulnerability from cvelistv5
Published
2023-03-24 23:32
Modified
2025-02-19 20:41
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a null point error in QuantizedMatMulWithBiasAndDequantize with MKL enabled. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.265Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25670",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:41:15.488644Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:41:24.650Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a null point error in QuantizedMatMulWithBiasAndDequantize with MKL enabled. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:32:12.780Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727"
        }
      ],
      "source": {
        "advisory": "GHSA-49rq-hwc3-x77w",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Null Pointer Error in QuantizedMatMulWithBiasAndDequantize"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25670",
    "datePublished": "2023-03-24T23:32:12.780Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:41:24.650Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29533 (GCVE-0-2021-29533)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.771Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:02",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
        }
      ],
      "source": {
        "advisory": "GHSA-393f-2jr3-cp69",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in DrawBoundingBoxes",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29533",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in DrawBoundingBoxes"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-393f-2jr3-cp69",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29533",
    "datePublished": "2021-05-14T19:12:02",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.771Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25663 (GCVE-0-2023-25663)
Vulnerability from cvelistv5
Published
2023-03-24 23:40
Modified
2025-02-19 20:38
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `ctx->step_containter()` is a null ptr, the Lookup function will be executed with a null pointer. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.312Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25663",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:38:12.185963Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:38:24.943Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `ctx-\u003estep_containter()` is a null ptr, the Lookup function will be executed with a null pointer. A fix is included in TensorFlow 2.12.0 and 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:40:59.362Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a"
        }
      ],
      "source": {
        "advisory": "GHSA-64jg-wjww-7c5w",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Null Pointer Error in TensorArrayConcatV2"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25663",
    "datePublished": "2023-03-24T23:40:59.362Z",
    "dateReserved": "2023-02-09T20:58:21.858Z",
    "dateUpdated": "2025-02-19T20:38:24.943Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15197 (GCVE-0-2020-15197)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-617 - {"":"Reachable Assertion"}
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.735Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "{\"CWE-617\":\"Reachable Assertion\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:30",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx"
        }
      ],
      "source": {
        "advisory": "GHSA-qc53-44cj-vfvx",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of Service in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15197",
          "STATE": "PUBLIC",
          "TITLE": "Denial of Service in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-617\":\"Reachable Assertion\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qc53-44cj-vfvx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15197",
    "datePublished": "2020-09-25T18:40:31",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.735Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29600 (GCVE-0-2021-29600)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.262Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:37",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5"
        }
      ],
      "source": {
        "advisory": "GHSA-j8qh-3xrq-c825",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `OneHot`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29600",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `OneHot`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j8qh-3xrq-c825",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29600",
    "datePublished": "2021-05-14T19:21:37",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.262Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29521 (GCVE-0-2021-29521)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.725Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:49",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
        }
      ],
      "source": {
        "advisory": "GHSA-hr84-fqvp-48mm",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in SparseCountSparseOutput",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29521",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in SparseCountSparseOutput"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hr84-fqvp-48mm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29521",
    "datePublished": "2021-05-14T19:35:49",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.725Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29563 (GCVE-0-2021-29563)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.263Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:06",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1"
        }
      ],
      "source": {
        "advisory": "GHSA-ph87-fvjr-v33w",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in `tf.raw_ops.RFFT`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29563",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in `tf.raw_ops.RFFT`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-ph87-fvjr-v33w",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29563",
    "datePublished": "2021-05-14T19:17:07",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.263Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21740 (GCVE-0-2022-21740)
Vulnerability from cvelistv5
Published
2022-02-03 14:30
Modified
2025-05-05 16:30
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` is vulnerable to a heap overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.649Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21740",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:02.464944Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-787",
                "description": "CWE-787 Out-of-bounds Write",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:30:47.380Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` is vulnerable to a heap overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T14:30:47.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
        }
      ],
      "source": {
        "advisory": "GHSA-44qp-9wwf-734r",
        "discovery": "UNKNOWN"
      },
      "title": "Heap overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21740",
          "STATE": "PUBLIC",
          "TITLE": "Heap overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` is vulnerable to a heap overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-44qp-9wwf-734r",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21740",
    "datePublished": "2022-02-03T14:30:47.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:30:47.380Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-33976 (GCVE-0-2023-33976)
Vulnerability from cvelistv5
Published
2024-07-30 19:27
Modified
2024-08-02 15:54
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an end-to-end open source platform for machine learning. `array_ops.upper_bound` causes a segfault when not given a rank 2 tensor. The fix will be included in TensorFlow 2.13 and will also cherrypick this commit on TensorFlow 2.12.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.13.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-33976",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-08-01T20:13:44.817399Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-08-01T20:14:02.779Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T15:54:14.208Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.13.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. `array_ops.upper_bound` causes a segfault when not given a rank 2 tensor. The fix will be included in TensorFlow 2.13 and will also cherrypick this commit on TensorFlow 2.12."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-07-30T19:27:14.532Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586"
        }
      ],
      "source": {
        "advisory": "GHSA-gjh7-xx4r-x345",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow segfault in array_ops.upper_bound"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-33976",
    "datePublished": "2024-07-30T19:27:14.532Z",
    "dateReserved": "2023-05-24T13:46:35.955Z",
    "dateUpdated": "2024-08-02T15:54:14.208Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37641 (GCVE-0-2021-37641)
Vulnerability from cvelistv5
Published
2021-08-12 20:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.426Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don\u0027t determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:30:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
        }
      ],
      "source": {
        "advisory": "GHSA-9c8h-vvrj-w2p8",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in `RaggedGather` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37641",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in `RaggedGather` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don\u0027t determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9c8h-vvrj-w2p8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37641",
    "datePublished": "2021-08-12T20:30:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.426Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15192 (GCVE-0-2020-15192)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes a list of strings to `dlpack.to_dlpack` there is a memory leak following an expected validation failure. The issue occurs because the `status` argument during validation failures is not properly checked. Since each of the above methods can return an error status, the `status` value must be checked before continuing. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.2.0
Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.666Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.2.0"
            },
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes a list of strings to `dlpack.to_dlpack` there is a memory leak following an expected validation failure. The issue occurs because the `status` argument during validation failures is not properly checked. Since each of the above methods can return an error status, the `status` value must be checked before continuing. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-8fxw-76px-3rxv",
        "discovery": "UNKNOWN"
      },
      "title": "Memory leak in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15192",
          "STATE": "PUBLIC",
          "TITLE": "Memory leak in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.2.0"
                          },
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes a list of strings to `dlpack.to_dlpack` there is a memory leak following an expected validation failure. The issue occurs because the `status` argument during validation failures is not properly checked. Since each of the above methods can return an error status, the `status` value must be checked before continuing. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8fxw-76px-3rxv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15192",
    "datePublished": "2020-09-25T18:40:56",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.666Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29551 (GCVE-0-2021-29551)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.916Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:30",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68"
        }
      ],
      "source": {
        "advisory": "GHSA-vqw6-72r7-fgw7",
        "discovery": "UNKNOWN"
      },
      "title": "OOB read in `MatrixTriangularSolve`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29551",
          "STATE": "PUBLIC",
          "TITLE": "OOB read in `MatrixTriangularSolve`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vqw6-72r7-fgw7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29551",
    "datePublished": "2021-05-14T19:10:30",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.916Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29617 (GCVE-0-2021-29617)
Vulnerability from cvelistv5
Published
2021-05-14 19:25
Modified
2024-08-03 22:11
CWE
  • CWE-755 - Improper Handling of Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.281Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/issues/46900"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/issues/46974"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-755",
              "description": "CWE-755: Improper Handling of Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:25:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/issues/46900"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/issues/46974"
        }
      ],
      "source": {
        "advisory": "GHSA-mmq6-q8r3-48fm",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in `tf.strings.substr` due to `CHECK`-fail",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29617",
          "STATE": "PUBLIC",
          "TITLE": "Crash in `tf.strings.substr` due to `CHECK`-fail"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-755: Improper Handling of Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f"
            },
            {
              "name": "https://github.com/tensorflow/issues/46900",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/issues/46900"
            },
            {
              "name": "https://github.com/tensorflow/issues/46974",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/issues/46974"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mmq6-q8r3-48fm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29617",
    "datePublished": "2021-05-14T19:25:23",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.281Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37662 (GCVE-0-2021-37662)
Vulnerability from cvelistv5
Published
2021-08-12 20:55
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.444Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:55:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad"
        }
      ],
      "source": {
        "advisory": "GHSA-f5cx-5wr3-5qrc",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in boosted trees in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37662",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in boosted trees in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f5cx-5wr3-5qrc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37662",
    "datePublished": "2021-08-12T20:55:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.444Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23586 (GCVE-0-2022-23586)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that assertions in `function.cc` would be falsified and crash the Python interpreter. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.5.3
Version: >= 2.6.0, < 2.6.3
Version: >= 2.7.0, < 2.7.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.905Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23586",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:57.444423Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:56.888Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that assertions in `function.cc` would be falsified and crash the Python interpreter. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:19.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-43jf-985q-588j",
        "discovery": "UNKNOWN"
      },
      "title": "Multiple `CHECK`-fails in `function.cc` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23586",
          "STATE": "PUBLIC",
          "TITLE": "Multiple `CHECK`-fails in `function.cc` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.5.3"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that assertions in `function.cc` would be falsified and crash the Python interpreter. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-43jf-985q-588j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23586",
    "datePublished": "2022-02-04T22:32:19.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:56.888Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15208 (GCVE-0-2020-15208)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
CWE
  • CWE-125 - {"":"Out-of-bounds Read"}
  • CWE-787 - {"":"Out-of-bounds Write"}
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.832Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.4,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "{\"CWE-125\":\"Out-of-bounds Read\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "{\"CWE-787\":\"Out-of-bounds Write\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-mxjj-953w-2c2v",
        "discovery": "UNKNOWN"
      },
      "title": "Data corruption in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15208",
          "STATE": "PUBLIC",
          "TITLE": "Data corruption in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "NONE",
            "baseScore": 7.4,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-125\":\"Out-of-bounds Read\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-787\":\"Out-of-bounds Write\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mxjj-953w-2c2v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15208",
    "datePublished": "2020-09-25T18:45:40",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.832Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25676 (GCVE-0-2023-25676)
Vulnerability from cvelistv5
Published
2023-03-24 23:10
Modified
2025-02-19 20:43
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.ParallelConcat` segfaults with a nullptr dereference when given a parameter `shape` with rank that is not greater than zero. A fix is available in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.292Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25676",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:43:05.736543Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:43:21.228Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.ParallelConcat` segfaults with a nullptr dereference when given a parameter `shape` with rank that is not greater than zero. A fix is available in TensorFlow 2.12.0 and 2.11.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:10:30.431Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15"
        }
      ],
      "source": {
        "advisory": "GHSA-6wfh-89q8-44jq",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has null dereference on ParallelConcat with XLA"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25676",
    "datePublished": "2023-03-24T23:10:30.431Z",
    "dateReserved": "2023-02-09T20:58:21.859Z",
    "dateUpdated": "2025-02-19T20:43:21.228Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41908 (GCVE-0-2022-41908)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. An input `token` that is not a UTF-8 bytestring will trigger a `CHECK` fail in `tf.raw_ops.PyFunc`. We have patched the issue in GitHub commit 9f03a9d3bafe902c1e6beb105b2f24172f238645. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.348Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv77-9g28-cwg3"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/9f03a9d3bafe902c1e6beb105b2f24172f238645"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41908",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:38.521380Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:02:59.540Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. An input `token` that is not a UTF-8 bytestring will trigger a `CHECK` fail in `tf.raw_ops.PyFunc`. We have patched the issue in GitHub commit 9f03a9d3bafe902c1e6beb105b2f24172f238645. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv77-9g28-cwg3"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/9f03a9d3bafe902c1e6beb105b2f24172f238645"
        }
      ],
      "source": {
        "advisory": "GHSA-mv77-9g28-cwg3",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail via inputs in `PyFunc` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41908",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:02:59.540Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41886 (GCVE-0-2022-41886)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:06
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ImageProjectiveTransformV2` is given a large output shape, it overflows. We have patched the issue in GitHub commit 8faa6ea692985dbe6ce10e1a3168e0bd60a723ba. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.226Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54pp-c6pp-7fpx"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8faa6ea692985dbe6ce10e1a3168e0bd60a723ba"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/image_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41886",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:32.792449Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:06:37.773Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ImageProjectiveTransformV2` is given a large output shape, it overflows. We have patched the issue in GitHub commit 8faa6ea692985dbe6ce10e1a3168e0bd60a723ba. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54pp-c6pp-7fpx"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/8faa6ea692985dbe6ce10e1a3168e0bd60a723ba"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/image_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-54pp-c6pp-7fpx",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow in `ImageProjectiveTransformV2` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41886",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:06:37.773Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29515 (GCVE-0-2021-29515)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.742Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6"
        }
      ],
      "source": {
        "advisory": "GHSA-hc6c-75p4-hmq4",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to null pointer in `MatrixDiag*` ops",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29515",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to null pointer in `MatrixDiag*` ops"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hc6c-75p4-hmq4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29515",
    "datePublished": "2021-05-14T19:36:20",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.742Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29560 (GCVE-0-2021-29560)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.665Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:24",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121"
        }
      ],
      "source": {
        "advisory": "GHSA-8gv3-57p6-g35r",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `RaggedTensorToTensor`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29560",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `RaggedTensorToTensor`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8gv3-57p6-g35r",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29560",
    "datePublished": "2021-05-14T19:17:24",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.665Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29619 (GCVE-0-2021-29619)
Vulnerability from cvelistv5
Published
2021-05-14 19:25
Modified
2024-08-03 22:11
CWE
  • CWE-755 - Improper Handling of Exceptional Conditions
Summary
TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.083Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-755",
              "description": "CWE-755: Improper Handling of Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:25:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9"
        }
      ],
      "source": {
        "advisory": "GHSA-wvjw-p9f5-vq28",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `tf.raw_ops.SparseCountSparseOutput`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29619",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `tf.raw_ops.SparseCountSparseOutput`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-755: Improper Handling of Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wvjw-p9f5-vq28",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29619",
    "datePublished": "2021-05-14T19:25:13",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.083Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29197 (GCVE-0-2022-29197)
Vulnerability from cvelistv5
Published
2022-05-20 21:55
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.098Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29197",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:19.435958Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:07.613Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:55:18.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95"
        }
      ],
      "source": {
        "advisory": "GHSA-hrg5-737c-2p56",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `UnsortedSegmentJoin`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29197",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `UnsortedSegmentJoin`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hrg5-737c-2p56",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29197",
    "datePublished": "2022-05-20T21:55:18.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:07.613Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37676 (GCVE-0-2021-37676)
Vulnerability from cvelistv5
Published
2021-08-12 21:40
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.SparseFillEmptyRows`. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) does not validate that the input arguments are not empty tensors. We have patched the issue in GitHub commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.528Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.SparseFillEmptyRows`. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) does not validate that the input arguments are not empty tensors. We have patched the issue in GitHub commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:40:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed"
        }
      ],
      "source": {
        "advisory": "GHSA-v768-w7m9-2vmm",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in shape inference in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37676",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in shape inference in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.SparseFillEmptyRows`. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) does not validate that the input arguments are not empty tensors. We have patched the issue in GitHub commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v768-w7m9-2vmm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37676",
    "datePublished": "2021-08-12T21:40:27",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.528Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37673 (GCVE-0-2021-37673)
Vulnerability from cvelistv5
Published
2021-08-12 22:55
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.441Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:55:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d"
        }
      ],
      "source": {
        "advisory": "GHSA-278g-rq84-9hmg",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-fail in `MapStage` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37673",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-fail in `MapStage` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-278g-rq84-9hmg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37673",
    "datePublished": "2021-08-12T22:55:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.441Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29576 (GCVE-0-2021-29576)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-119 - Improper Restriction of Operations within the Bounds of a Memory Buffer
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.062Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:04",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
        }
      ],
      "source": {
        "advisory": "GHSA-7cqx-92hp-x6wh",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `MaxPool3DGradGrad`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29576",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `MaxPool3DGradGrad`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7cqx-92hp-x6wh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29576",
    "datePublished": "2021-05-14T19:16:04",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.062Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41217 (GCVE-0-2021-41217)
Vulnerability from cvelistv5
Published
2021-11-05 20:55
Modified
2024-08-04 03:08
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. In affected versions the process of building the control flow graph for a TensorFlow model is vulnerable to a null pointer exception when nodes that should be paired are not. This occurs because the code assumes that the first node in the pairing (e.g., an `Enter` node) always exists when encountering the second node (e.g., an `Exit` node). When this is not the case, `parent` is `nullptr` so dereferencing it causes a crash. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.448Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the process of building the control flow graph for a TensorFlow model is vulnerable to a null pointer exception when nodes that should be paired are not. This occurs because the code assumes that the first node in the pairing (e.g., an `Enter` node) always exists when encountering the second node (e.g., an `Exit` node). When this is not the case, `parent` is `nullptr` so dereferencing it causes a crash. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:55:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff"
        }
      ],
      "source": {
        "advisory": "GHSA-5crj-c72x-m7gq",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer exception when `Exit` node is not preceded by `Enter` op",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41217",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer exception when `Exit` node is not preceded by `Enter` op"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the process of building the control flow graph for a TensorFlow model is vulnerable to a null pointer exception when nodes that should be paired are not. This occurs because the code assumes that the first node in the pairing (e.g., an `Enter` node) always exists when encountering the second node (e.g., an `Exit` node). When this is not the case, `parent` is `nullptr` so dereferencing it causes a crash. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5crj-c72x-m7gq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41217",
    "datePublished": "2021-11-05T20:55:10",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.448Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35985 (GCVE-0-2022-35985)
Vulnerability from cvelistv5
Published
2022-09-16 21:40
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.752Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35985",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:00.926951Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:47.248Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:40:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255"
        }
      ],
      "source": {
        "advisory": "GHSA-9942-r22v-78cp",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `LRNGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35985",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `LRNGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9942-r22v-78cp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35985",
    "datePublished": "2022-09-16T21:40:20.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:47.248Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35997 (GCVE-0-2022-35997)
Vulnerability from cvelistv5
Published
2022-09-16 22:15
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. If `tf.sparse.cross` receives an input `separator` that is not a scalar, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.513Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35997",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:19.518728Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:21.604Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `tf.sparse.cross` receives an input `separator` that is not a scalar, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:15:18.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf"
        }
      ],
      "source": {
        "advisory": "GHSA-p7hr-f446-x6qf",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `tf.sparse.cross` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35997",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `tf.sparse.cross` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `tf.sparse.cross` receives an input `separator` that is not a scalar, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p7hr-f446-x6qf",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35997",
    "datePublished": "2022-09-16T22:15:18.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:21.604Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41900 (GCVE-0-2022-41900)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:03
CWE
Summary
TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.345Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41900",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:40:35.291563Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:03:33.028Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
        }
      ],
      "source": {
        "advisory": "GHSA-xvwp-h6jv-7472",
        "discovery": "UNKNOWN"
      },
      "title": "FractionalMaxPool and FractionalAVGPool heap out-of-bounds acess in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41900",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:03:33.028Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23591 (GCVE-0-2022-23591)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-23 19:08
CWE
  • CWE-400 - Uncontrolled Resource Consumption
Summary
Tensorflow is an Open Source Machine Learning Framework. The `GraphDef` format in TensorFlow does not allow self recursive functions. The runtime assumes that this invariant is satisfied. However, a `GraphDef` containing a fragment such as the following can be consumed when loading a `SavedModel`. This would result in a stack overflow during execution as resolving each `NodeDef` means resolving the function itself and its nodes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.959Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23591",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:57:48.274385Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T19:08:10.411Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The `GraphDef` format in TensorFlow does not allow self recursive functions. The runtime assumes that this invariant is satisfied. However, a `GraphDef` containing a fragment such as the following can be consumed when loading a `SavedModel`. This would result in a stack overflow during execution as resolving each `NodeDef` means resolving the function itself and its nodes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-400",
              "description": "CWE-400: Uncontrolled Resource Consumption",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c"
        }
      ],
      "source": {
        "advisory": "GHSA-247x-2f9f-5wp7",
        "discovery": "UNKNOWN"
      },
      "title": "Stack overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23591",
          "STATE": "PUBLIC",
          "TITLE": "Stack overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The `GraphDef` format in TensorFlow does not allow self recursive functions. The runtime assumes that this invariant is satisfied. However, a `GraphDef` containing a fragment such as the following can be consumed when loading a `SavedModel`. This would result in a stack overflow during execution as resolving each `NodeDef` means resolving the function itself and its nodes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-400: Uncontrolled Resource Consumption"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-247x-2f9f-5wp7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23591",
    "datePublished": "2022-02-04T22:32:09.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-23T19:08:10.411Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37675 (GCVE-0-2021-37675)
Vulnerability from cvelistv5
Published
2021-08-12 21:45
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions most implementations of convolution operators in TensorFlow are affected by a division by 0 vulnerability where an attacker can trigger a denial of service via a crash. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) is missing several validations before doing divisions and modulo operations. We have patched the issue in GitHub commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.430Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions most implementations of convolution operators in TensorFlow are affected by a division by 0 vulnerability where an attacker can trigger a denial of service via a crash. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) is missing several validations before doing divisions and modulo operations. We have patched the issue in GitHub commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:45:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4"
        }
      ],
      "source": {
        "advisory": "GHSA-9c8h-2mv3-49ww",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in most convolution operators in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37675",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in most convolution operators in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions most implementations of convolution operators in TensorFlow are affected by a division by 0 vulnerability where an attacker can trigger a denial of service via a crash. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) is missing several validations before doing divisions and modulo operations. We have patched the issue in GitHub commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9c8h-2mv3-49ww",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37675",
    "datePublished": "2021-08-12T21:45:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.430Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29541 (GCVE-0-2021-29541)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.695Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:21",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr"
        }
      ],
      "source": {
        "advisory": "GHSA-xqfj-35wv-m3cr",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `StringNGrams`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29541",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `StringNGrams`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xqfj-35wv-m3cr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29541",
    "datePublished": "2021-05-14T19:11:21",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.695Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21733 (GCVE-0-2022-21733)
Vulnerability from cvelistv5
Published
2022-02-03 11:28
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.773Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21733",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:28.380553Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:04.090Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:28:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161"
        }
      ],
      "source": {
        "advisory": "GHSA-98j8-c9q4-r38g",
        "discovery": "UNKNOWN"
      },
      "title": "Memory exhaustion in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21733",
          "STATE": "PUBLIC",
          "TITLE": "Memory exhaustion in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-98j8-c9q4-r38g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21733",
    "datePublished": "2022-02-03T11:28:10.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:04.090Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23593 (GCVE-0-2022-23593)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:27
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
Tensorflow is an Open Source Machine Learning Framework. The `simplifyBroadcast` function in the MLIR-TFRT infrastructure in TensorFlow is vulnerable to a segfault (hence, denial of service), if called with scalar shapes. If all shapes are scalar, then `maxRank` is 0, so we build an empty `SmallVector`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.8.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.906Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23593",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:29.923296Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:27:13.457Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.8.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The `simplifyBroadcast` function in the MLIR-TFRT infrastructure in TensorFlow is vulnerable to a segfault (hence, denial of service), if called with scalar shapes. If all shapes are scalar, then `maxRank` is 0, so we build an empty `SmallVector`. The fix will be included in TensorFlow 2.8.0. This is the only affected version."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:08.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205"
        }
      ],
      "source": {
        "advisory": "GHSA-gwcx-jrx4-92w2",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `simplifyBroadcast` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23593",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `simplifyBroadcast` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.8.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The `simplifyBroadcast` function in the MLIR-TFRT infrastructure in TensorFlow is vulnerable to a segfault (hence, denial of service), if called with scalar shapes. If all shapes are scalar, then `maxRank` is 0, so we build an empty `SmallVector`. The fix will be included in TensorFlow 2.8.0. This is the only affected version."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gwcx-jrx4-92w2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23593",
    "datePublished": "2022-02-04T22:32:08.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:27:13.457Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23589 (GCVE-0-2022-23589)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow can trigger a null pointer dereference. There are 2 places where this can occur, for the same malicious alteration of a `SavedModel` file (fixing the first one would trigger the same dereference in the second place). First, during constant folding, the `GraphDef` might not have the required nodes for the binary operation. If a node is missing, the correposning `mul_*child` would be null, and the dereference in the subsequent line would be incorrect. We have a similar issue during `IsIdentityConsumingSwitch`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.987Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23589",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:53.419550Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:46.642Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow can trigger a null pointer dereference. There are 2 places where this can occur, for the same malicious alteration of a `SavedModel` file (fixing the first one would trigger the same dereference in the second place). First, during constant folding, the `GraphDef` might not have the required nodes for the binary operation. If a node is missing, the correposning `mul_*child` would be null, and the dereference in the subsequent line would be incorrect. We have a similar issue during `IsIdentityConsumingSwitch`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497"
        }
      ],
      "source": {
        "advisory": "GHSA-9px9-73fg-3fqp",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in Grappler\u0027s `IsConstant` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23589",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in Grappler\u0027s `IsConstant` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow can trigger a null pointer dereference. There are 2 places where this can occur, for the same malicious alteration of a `SavedModel` file (fixing the first one would trigger the same dereference in the second place). First, during constant folding, the `GraphDef` might not have the required nodes for the binary operation. If a node is missing, the correposning `mul_*child` would be null, and the dereference in the subsequent line would be incorrect. We have a similar issue during `IsIdentityConsumingSwitch`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9px9-73fg-3fqp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23589",
    "datePublished": "2022-02-04T22:32:20.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:46.642Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-10055 (GCVE-0-2018-10055)
Vulnerability from cvelistv5
Published
2019-04-24 16:17
Modified
2024-08-05 07:32
Severity ?
CWE
  • n/a
Summary
Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T07:32:00.842Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2018-05-31T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-24T16:17:53",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-10055",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-10055",
    "datePublished": "2019-04-24T16:17:53",
    "dateReserved": "2018-04-11T00:00:00",
    "dateUpdated": "2024-08-05T07:32:00.842Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41909 (GCVE-0-2022-41909)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. An input `encoded` that is not a valid `CompositeTensorVariant` tensor will trigger a segfault in `tf.raw_ops.CompositeTensorVariantToComponents`. We have patched the issue in GitHub commits bf594d08d377dc6a3354d9fdb494b32d45f91971 and 660ce5a89eb6766834bdc303d2ab3902aef99d3d. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.393Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjx6-v474-2ch9"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/660ce5a89eb6766834bdc303d2ab3902aef99d3d"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bf594d08d377dc6a3354d9fdb494b32d45f91971"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41909",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:41:35.648157Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:02:49.290Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. An input `encoded` that is not a valid `CompositeTensorVariant` tensor will trigger a segfault in `tf.raw_ops.CompositeTensorVariantToComponents`. We have patched the issue in GitHub commits bf594d08d377dc6a3354d9fdb494b32d45f91971 and 660ce5a89eb6766834bdc303d2ab3902aef99d3d. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjx6-v474-2ch9"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/660ce5a89eb6766834bdc303d2ab3902aef99d3d"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/bf594d08d377dc6a3354d9fdb494b32d45f91971"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-rjx6-v474-2ch9",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `CompositeTensorVariantToComponents` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41909",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:02:49.290Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41215 (GCVE-0-2021-41215)
Vulnerability from cvelistv5
Published
2021-11-05 20:55
Modified
2024-08-04 03:08
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.507Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:55:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850"
        }
      ],
      "source": {
        "advisory": "GHSA-x3v8-c8qx-3j3r",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer exception in `DeserializeSparse`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41215",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer exception in `DeserializeSparse`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x3v8-c8qx-3j3r",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41215",
    "datePublished": "2021-11-05T20:55:16",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.507Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21738 (GCVE-0-2022-21738)
Vulnerability from cvelistv5
Published
2022-02-03 13:19
Modified
2025-05-05 16:31
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.799Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21738",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:09.236789Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:31:06.047Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T13:19:05.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a"
        }
      ],
      "source": {
        "advisory": "GHSA-x4qx-4fjv-hmw6",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow leading to crash in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21738",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow leading to crash in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x4qx-4fjv-hmw6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21738",
    "datePublished": "2022-02-03T13:19:05.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:31:06.047Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36001 (GCVE-0-2022-36001)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. When `DrawBoundingBoxes` receives an input `boxes` that is not of dtype `float`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit da0d65cdc1270038e72157ba35bf74b85d9bda11. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.864Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36001",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:40.294850Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:05.199Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `DrawBoundingBoxes` receives an input `boxes` that is not of dtype `float`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit da0d65cdc1270038e72157ba35bf74b85d9bda11. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11"
        }
      ],
      "source": {
        "advisory": "GHSA-jqm7-m5q7-3hm5",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `DrawBoundingBoxes` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36001",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `DrawBoundingBoxes` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `DrawBoundingBoxes` receives an input `boxes` that is not of dtype `float`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit da0d65cdc1270038e72157ba35bf74b85d9bda11. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jqm7-m5q7-3hm5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36001",
    "datePublished": "2022-09-16T22:10:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:05.199Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41196 (GCVE-0-2021-41196)
Vulnerability from cvelistv5
Published
2021-11-05 19:55
Modified
2024-08-04 03:08
CWE
  • CWE-191 - Integer Underflow (Wrap or Wraparound)
Summary
TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow's implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.485Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/51936"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-191",
              "description": "CWE-191: Integer Underflow (Wrap or Wraparound)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:55:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/51936"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
        }
      ],
      "source": {
        "advisory": "GHSA-m539-j985-hcr8",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in `max_pool3d` when size argument is 0 or negative",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41196",
          "STATE": "PUBLIC",
          "TITLE": "Crash in `max_pool3d` when size argument is 0 or negative"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-191: Integer Underflow (Wrap or Wraparound)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/51936",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/51936"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m539-j985-hcr8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41196",
    "datePublished": "2021-11-05T19:55:13",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.485Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29582 (GCVE-0-2021-29582)
Vulnerability from cvelistv5
Published
2021-05-14 19:15
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.285Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:15:34",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b"
        }
      ],
      "source": {
        "advisory": "GHSA-c45w-2wxr-pp53",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in `tf.raw_ops.Dequantize`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29582",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in `tf.raw_ops.Dequantize`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c45w-2wxr-pp53",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29582",
    "datePublished": "2021-05-14T19:15:34",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.285Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36011 (GCVE-0-2022-36011)
Vulnerability from cvelistv5
Published
2022-09-16 22:30
Modified
2025-04-23 16:59
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.601Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36011",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:57:57.790258Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:29.191Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:30:21.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b"
        }
      ],
      "source": {
        "advisory": "GHSA-fv43-93gv-vm8f",
        "discovery": "UNKNOWN"
      },
      "title": "Null dereference on MLIR on empty function attributes in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36011",
          "STATE": "PUBLIC",
          "TITLE": "Null dereference on MLIR on empty function attributes in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fv43-93gv-vm8f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36011",
    "datePublished": "2022-09-16T22:30:21.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:29.191Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37643 (GCVE-0-2021-37643)
Vulnerability from cvelistv5
Published
2021-08-12 18:10
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.386Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T18:10:21",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988"
        }
      ],
      "source": {
        "advisory": "GHSA-fcwc-p4fc-c5cc",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `MatrixDiagPartOp` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37643",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `MatrixDiagPartOp` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fcwc-p4fc-c5cc",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37643",
    "datePublished": "2021-08-12T18:10:21",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.386Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41227 (GCVE-0-2021-41227)
Vulnerability from cvelistv5
Published
2021-11-05 22:30
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.590Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 6.6,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:30:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585"
        }
      ],
      "source": {
        "advisory": "GHSA-j8c8-67vp-6mx7",
        "discovery": "UNKNOWN"
      },
      "title": "Arbitrary memory read in `ImmutableConst`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41227",
          "STATE": "PUBLIC",
          "TITLE": "Arbitrary memory read in `ImmutableConst`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 6.6,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j8c8-67vp-6mx7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41227",
    "datePublished": "2021-11-05T22:30:23",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.590Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23583 (GCVE-0-2022-23583)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:26
CWE
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don't match the type of data in `out` and `input_*` tensors then `flat<*>` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.960Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23583",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:51:02.181725Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:26:06.914Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don\u0027t match the type of data in `out` and `input_*` tensors then `flat\u003c*\u003e` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:18.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137"
        }
      ],
      "source": {
        "advisory": "GHSA-gjqc-q9g6-q2j3",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures in binary ops in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23583",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures in binary ops in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don\u0027t match the type of data in `out` and `input_*` tensors then `flat\u003c*\u003e` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gjqc-q9g6-q2j3",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23583",
    "datePublished": "2022-02-04T22:32:18.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:26:06.914Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29196 (GCVE-0-2022-29196)
Vulnerability from cvelistv5
Published
2022-05-20 21:55
Modified
2025-04-22 17:59
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.Conv3DBackpropFilterV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate that the `filter_sizes` argument is a vector. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.117Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29196",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:23.281693Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:59:18.399Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.Conv3DBackpropFilterV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate that the `filter_sizes` argument is a vector. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:55:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-5v77-j66x-4c4g",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `Conv3DBackpropFilterV2`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29196",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `Conv3DBackpropFilterV2`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.Conv3DBackpropFilterV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate that the `filter_sizes` argument is a vector. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5v77-j66x-4c4g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29196",
    "datePublished": "2022-05-20T21:55:12.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:59:18.399Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23585 (GCVE-0-2022-23585)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-401 - Missing Release of Memory after Effective Lifetime
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., &decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(&decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.5.3
Version: >= 2.6.0, < 2.6.3
Version: >= 2.7.0, < 2.7.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.959Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23585",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:17.637283Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:37.595Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., \u0026decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(\u0026decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-401",
              "description": "CWE-401: Missing Release of Memory after Effective Lifetime",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:27.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416"
        }
      ],
      "source": {
        "advisory": "GHSA-fq6p-6334-8gr4",
        "discovery": "UNKNOWN"
      },
      "title": "Memory leak in decoding PNG images in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23585",
          "STATE": "PUBLIC",
          "TITLE": "Memory leak in decoding PNG images in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.5.3"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., \u0026decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(\u0026decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-401: Missing Release of Memory after Effective Lifetime"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fq6p-6334-8gr4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23585",
    "datePublished": "2022-02-04T22:32:27.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:37.595Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41883 (GCVE-0-2022-41883)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:07
CWE
Summary
TensorFlow is an open source platform for machine learning. When ops that have specified input sizes receive a differing number of inputs, the executor will crash. We have patched the issue in GitHub commit f5381e0e10b5a61344109c1b7c174c68110f7629. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.215Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w58w-79xv-6vcj"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f5381e0e10b5a61344109c1b7c174c68110f7629"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/dynamic_stitch_op.cc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/data_flow_ops.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41883",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:42.554778Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:07:05.864Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When ops that have specified input sizes receive a differing number of inputs, the executor will crash. We have patched the issue in GitHub commit f5381e0e10b5a61344109c1b7c174c68110f7629. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-19T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w58w-79xv-6vcj"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/f5381e0e10b5a61344109c1b7c174c68110f7629"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/dynamic_stitch_op.cc"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/data_flow_ops.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-w58w-79xv-6vcj",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds segmentation fault due to unequal op inputs in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41883",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:07:05.864Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29517 (GCVE-0-2021-29517)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.568Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
        }
      ],
      "source": {
        "advisory": "GHSA-772p-x54p-hjrv",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in `Conv3D`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29517",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in `Conv3D`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-772p-x54p-hjrv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29517",
    "datePublished": "2021-05-14T19:36:11",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.568Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-26268 (GCVE-0-2020-26268)
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
CWE
  • CWE-471 - Modification of Assumed-Immutable Data (MAID)
Summary
In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.5
Version: >= 2.0.0, < 2.0.4
Version: >= 2.1.0, < 2.1.3
Version: >= 2.2.0, < 2.2.2
Version: >= 2.3.0, < 2.3.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:03.596Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-471",
              "description": "CWE-471 Modification of Assumed-Immutable Data (MAID)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:34",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7"
        }
      ],
      "source": {
        "advisory": "GHSA-hhvc-g5hv-48c6",
        "discovery": "UNKNOWN"
      },
      "title": "Write to immutable memory region in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26268",
          "STATE": "PUBLIC",
          "TITLE": "Write to immutable memory region in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-471 Modification of Assumed-Immutable Data (MAID)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hhvc-g5hv-48c6",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26268",
    "datePublished": "2020-12-10T22:10:35",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:03.596Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37684 (GCVE-0-2021-37684)
Vulnerability from cvelistv5
Published
2021-08-12 22:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.504Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:30:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9"
        }
      ],
      "source": {
        "advisory": "GHSA-q7f7-544h-67h9",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TensorFlow Lite pooling operations",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37684",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TensorFlow Lite pooling operations"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-q7f7-544h-67h9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37684",
    "datePublished": "2021-08-12T22:30:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.504Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15209 (GCVE-0-2020-15209)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
CWE
  • CWE-476 - {"":"NULL Pointer Dereference"}
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.925Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "{\"CWE-476\":\"NULL Pointer Dereference\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-qh32-6jjc-qprm",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15209",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-476\":\"NULL Pointer Dereference\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qh32-6jjc-qprm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15209",
    "datePublished": "2020-09-25T18:45:35",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.925Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29542 (GCVE-0-2021-29542)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.402Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
        }
      ],
      "source": {
        "advisory": "GHSA-4hrh-9vmp-2jgg",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `StringNGrams`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29542",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `StringNGrams`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4hrh-9vmp-2jgg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29542",
    "datePublished": "2021-05-14T19:11:17",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.402Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21727 (GCVE-0-2022-21727)
Vulnerability from cvelistv5
Published
2022-02-03 11:07
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.841Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21727",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:29.809820Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-190",
                "description": "CWE-190 Integer Overflow or Wraparound",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:51.904Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:07:40.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
        }
      ],
      "source": {
        "advisory": "GHSA-c6fh-56w7-fvjw",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21727",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.6,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c6fh-56w7-fvjw",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21727",
    "datePublished": "2022-02-03T11:07:40.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:51.904Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37660 (GCVE-0-2021-37660)
Vulnerability from cvelistv5
Published
2021-08-12 17:35
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.434Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `\u0026\u0026`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T17:35:27",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618"
        }
      ],
      "source": {
        "advisory": "GHSA-cm5x-837x-jf3c",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in inplace operations in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37660",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in inplace operations in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `\u0026\u0026`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cm5x-837x-jf3c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37660",
    "datePublished": "2021-08-12T17:35:27",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.434Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29605 (GCVE-0-2021-29605)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret->size` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.309Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret-\u003esize` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5"
        }
      ],
      "source": {
        "advisory": "GHSA-jf7h-7m85-w2v2",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in TFLite memory allocation",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29605",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in TFLite memory allocation"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret-\u003esize` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jf7h-7m85-w2v2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29605",
    "datePublished": "2021-05-14T19:21:12",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.309Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35967 (GCVE-0-2022-35967)
Vulnerability from cvelistv5
Published
2022-09-16 20:35
Modified
2025-04-23 17:03
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedAdd` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.308Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35967",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:44.072973Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:03:24.192Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAdd` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T20:35:09.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
        }
      ],
      "source": {
        "advisory": "GHSA-v6h3-348g-6h5x",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedAdd` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35967",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedAdd` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAdd` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v6h3-348g-6h5x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35967",
    "datePublished": "2022-09-16T20:35:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:03:24.192Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29550 (GCVE-0-2021-29550)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.613Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
        }
      ],
      "source": {
        "advisory": "GHSA-f78g-q7r4-9wcv",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `FractionalAvgPool`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29550",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `FractionalAvgPool`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-f78g-q7r4-9wcv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29550",
    "datePublished": "2021-05-14T19:10:36",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.613Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41219 (GCVE-0-2021-41219)
Vulnerability from cvelistv5
Published
2021-11-05 20:50
Modified
2024-08-04 03:08
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.583Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:50:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae"
        }
      ],
      "source": {
        "advisory": "GHSA-4f99-p9c2-3j8x",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior via `nullptr` reference binding in sparse matrix multiplication",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41219",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior via `nullptr` reference binding in sparse matrix multiplication"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4f99-p9c2-3j8x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41219",
    "datePublished": "2021-11-05T20:50:17",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.583Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35982 (GCVE-0-2022-35982)
Vulnerability from cvelistv5
Published
2022-09-16 21:30
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.337Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35982",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:14.283355Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:19.278Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:30:13.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa"
        }
      ],
      "source": {
        "advisory": "GHSA-397c-5g2j-qxpv",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `SparseBincount` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35982",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `SparseBincount` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-397c-5g2j-qxpv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35982",
    "datePublished": "2022-09-16T21:30:13.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:19.278Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36013 (GCVE-0-2022-36013)
Vulnerability from cvelistv5
Published
2022-09-16 22:30
Modified
2025-04-23 16:59
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::GraphDefImporter::ConvertNodeDef` tries to convert NodeDefs without an op name, it crashes. We have patched the issue in GitHub commit a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.650Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36013",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:00.358511Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:35.082Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::GraphDefImporter::ConvertNodeDef` tries to convert NodeDefs without an op name, it crashes. We have patched the issue in GitHub commit a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:30:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-828c-5j5q-vrjq",
        "discovery": "UNKNOWN"
      },
      "title": "Null-dereference in `mlir::tfg::GraphDefImporter::ConvertNodeDef` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36013",
          "STATE": "PUBLIC",
          "TITLE": "Null-dereference in `mlir::tfg::GraphDefImporter::ConvertNodeDef` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::GraphDefImporter::ConvertNodeDef` tries to convert NodeDefs without an op name, it crashes. We have patched the issue in GitHub commit a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-828c-5j5q-vrjq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36013",
    "datePublished": "2022-09-16T22:30:14.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:35.082Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25673 (GCVE-0-2023-25673)
Vulnerability from cvelistv5
Published
2023-03-24 23:30
Modified
2025-02-19 20:15
CWE
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a Floating Point Exception in TensorListSplit with XLA. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.291Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25673",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:15:44.074872Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:15:52.572Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a Floating Point Exception in TensorListSplit with XLA. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-697",
              "description": "CWE-697: Incorrect Comparison",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:30:41.556Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
        }
      ],
      "source": {
        "advisory": "GHSA-647v-r7qq-24fh",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Floating Point Exception in TensorListSplit with XLA "
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25673",
    "datePublished": "2023-03-24T23:30:41.556Z",
    "dateReserved": "2023-02-09T20:58:21.859Z",
    "dateUpdated": "2025-02-19T20:15:52.572Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15213 (GCVE-0-2020-15213)
Vulnerability from cvelistv5
Published
2020-09-25 18:50
Modified
2024-08-04 13:08
CWE
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
  • CWE-770 - {"":"Allocation of Resources Without Limits or Throttling"}
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.2.0
Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.853Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.2.0"
            },
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-770",
              "description": "{\"CWE-770\":\"Allocation of Resources Without Limits or Throttling\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:50:29",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87"
        }
      ],
      "source": {
        "advisory": "GHSA-hjmq-236j-8m87",
        "discovery": "UNKNOWN"
      },
      "title": "Denial of service in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15213",
          "STATE": "PUBLIC",
          "TITLE": "Denial of service in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.2.0"
                          },
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-770\":\"Allocation of Resources Without Limits or Throttling\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-hjmq-236j-8m87",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15213",
    "datePublished": "2020-09-25T18:50:29",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.853Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41888 (GCVE-0-2022-41888)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:06
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. When running on GPU, `tf.image.generate_bounding_box_proposals` receives a `scores` input that must be of rank 4 but is not checked. We have patched the issue in GitHub commit cf35502463a88ca7185a99daa7031df60b3c1c98. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.462Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6x99-gv2v-q76v"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cf35502463a88ca7185a99daa7031df60b3c1c98"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41888",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:26.858048Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:06:00.864Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When running on GPU, `tf.image.generate_bounding_box_proposals` receives a `scores` input that must be of rank 4 but is not checked. We have patched the issue in GitHub commit cf35502463a88ca7185a99daa7031df60b3c1c98. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6x99-gv2v-q76v"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/cf35502463a88ca7185a99daa7031df60b3c1c98"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-6x99-gv2v-q76v",
        "discovery": "UNKNOWN"
      },
      "title": "Unckecked rank size in `tf.image.generate_bounding_box_proposals` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41888",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:06:00.864Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21726 (GCVE-0-2022-21726)
Vulnerability from cvelistv5
Published
2022-02-03 11:01
Modified
2025-05-05 16:33
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.693Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21726",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:31.390810Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-125",
                "description": "CWE-125 Out-of-bounds Read",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:33:01.982Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:01:42.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153"
        }
      ],
      "source": {
        "advisory": "GHSA-23hm-7w47-xw72",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds read in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21726",
          "STATE": "PUBLIC",
          "TITLE": "Out of bounds read in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-23hm-7w47-xw72",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21726",
    "datePublished": "2022-02-03T11:01:42.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:33:01.982Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37687 (GCVE-0-2021-37687)
Vulnerability from cvelistv5
Published
2021-08-12 22:15
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.653Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:15:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d"
        }
      ],
      "source": {
        "advisory": "GHSA-jwf9-w5xm-f437",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in TensorFlow Lite\u0027s `Gather*` implementations",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37687",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in TensorFlow Lite\u0027s `Gather*` implementations"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jwf9-w5xm-f437",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37687",
    "datePublished": "2021-08-12T22:15:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.653Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41197 (GCVE-0-2021-41197)
Vulnerability from cvelistv5
Published
2021-11-05 19:55
Modified
2024-08-04 03:08
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.502Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46890"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/51908"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:55:35",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46890"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/51908"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15"
        }
      ],
      "source": {
        "advisory": "GHSA-prcg-wp5q-rv7p",
        "discovery": "UNKNOWN"
      },
      "title": "Crashes due to overflow and `CHECK`-fail in ops with large tensor shapes",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41197",
          "STATE": "PUBLIC",
          "TITLE": "Crashes due to overflow and `CHECK`-fail in ops with large tensor shapes"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46890",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46890"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/51908",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/51908"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-prcg-wp5q-rv7p",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41197",
    "datePublished": "2021-11-05T19:55:36",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.502Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-5215 (GCVE-0-2020-5215)
Vulnerability from cvelistv5
Published
2020-01-28 21:20
Modified
2024-08-04 08:22
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant("hello", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.
Impacted products
Vendor Product Version
TensorFlow TensorFlow Version: < 1.15.2
Version: = 2.0.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T08:22:09.071Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "TensorFlow",
          "vendor": "TensorFlow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.2"
            },
            {
              "status": "affected",
              "version": "= 2.0.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\"hello\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754 Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-01-28T21:20:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
        }
      ],
      "source": {
        "advisory": "GHSA-977j-xj7q-2jr9",
        "discovery": "UNKNOWN"
      },
      "title": "Segmentation faultin TensorFlow when converting a Python string to tf.float16",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-5215",
          "STATE": "PUBLIC",
          "TITLE": "Segmentation faultin TensorFlow when converting a Python string to tf.float16"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "TensorFlow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.2"
                          },
                          {
                            "version_value": "= 2.0.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "TensorFlow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\"hello\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754 Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-977j-xj7q-2jr9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-5215",
    "datePublished": "2020-01-28T21:20:15",
    "dateReserved": "2020-01-02T00:00:00",
    "dateUpdated": "2024-08-04T08:22:09.071Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29570 (GCVE-0-2021-29570)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.239Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:31",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886"
        }
      ],
      "source": {
        "advisory": "GHSA-545v-42p7-98fq",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in `MaxPoolGradWithArgmax`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29570",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds read in `MaxPoolGradWithArgmax`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-545v-42p7-98fq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29570",
    "datePublished": "2021-05-14T19:16:31",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.239Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29603 (GCVE-0-2021-29603)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims->data`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.269Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims-\u003edata`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:20",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683"
        }
      ],
      "source": {
        "advisory": "GHSA-crch-j389-5f84",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB write in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29603",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB write in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims-\u003edata`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-787: Out-of-bounds Write"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-crch-j389-5f84",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29603",
    "datePublished": "2021-05-14T19:21:20",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.269Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29194 (GCVE-0-2022-29194)
Vulnerability from cvelistv5
Published
2022-05-20 21:10
Modified
2025-04-22 18:00
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.DeleteSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.237Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29194",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:38.936102Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:00:13.737Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": " \u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.DeleteSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T21:10:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144"
        }
      ],
      "source": {
        "advisory": "GHSA-h5g4-ppwx-48q2",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service via `DeleteSessionTensor` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29194",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service via `DeleteSessionTensor` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": " \u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.DeleteSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h5g4-ppwx-48q2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29194",
    "datePublished": "2022-05-20T21:10:12.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:00:13.737Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37661 (GCVE-0-2021-37661)
Vulnerability from cvelistv5
Published
2021-08-12 21:05
Modified
2024-08-04 01:23
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.463Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:05:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992"
        }
      ],
      "source": {
        "advisory": "GHSA-gf88-j2mg-cc82",
        "discovery": "UNKNOWN"
      },
      "title": "Crash caused by integer conversion to unsigned in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37661",
          "STATE": "PUBLIC",
          "TITLE": "Crash caused by integer conversion to unsigned in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gf88-j2mg-cc82",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37661",
    "datePublished": "2021-08-12T21:05:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.463Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35984 (GCVE-0-2022-35984)
Vulnerability from cvelistv5
Published
2022-09-16 21:40
Modified
2025-04-23 17:01
CWE
Summary
TensorFlow is an open source platform for machine learning. `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.627Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35984",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:03.391395Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:01:53.304Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:40:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51"
        }
      ],
      "source": {
        "advisory": "GHSA-p2xf-8hgm-hpw5",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `ParameterizedTruncatedNormal` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35984",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `ParameterizedTruncatedNormal` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p2xf-8hgm-hpw5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35984",
    "datePublished": "2022-09-16T21:40:14.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:01:53.304Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41206 (GCVE-0-2021-41206)
Vulnerability from cvelistv5
Published
2021-11-05 22:05
Modified
2024-08-04 03:08
CWE
  • CWE-354 - Improper Validation of Integrity Check Value
Summary
TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.625Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don\u0027t have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-354",
              "description": "CWE-354: Improper Validation of Integrity Check Value",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:05:13",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904"
        }
      ],
      "source": {
        "advisory": "GHSA-pgcq-h79j-2f69",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation of shapes in multiple TF ops",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41206",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation of shapes in multiple TF ops"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don\u0027t have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-354: Improper Validation of Integrity Check Value"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pgcq-h79j-2f69",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41206",
    "datePublished": "2021-11-05T22:05:14",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.625Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35992 (GCVE-0-2022-35992)
Vulnerability from cvelistv5
Published
2022-09-16 22:20
Modified
2025-04-23 16:59
CWE
Summary
TensorFlow is an open source platform for machine learning. When `TensorListFromTensor` receives an `element_shape` of a rank greater than one, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 3db59a042a38f4338aa207922fa2f476e000a6ee. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.517Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35992",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:09.179728Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:53.884Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `TensorListFromTensor` receives an `element_shape` of a rank greater than one, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 3db59a042a38f4338aa207922fa2f476e000a6ee. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:20:20.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee"
        }
      ],
      "source": {
        "advisory": "GHSA-9v8w-xmr4-wgxp",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `TensorListFromTensor` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35992",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `TensorListFromTensor` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `TensorListFromTensor` receives an `element_shape` of a rank greater than one, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 3db59a042a38f4338aa207922fa2f476e000a6ee. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9v8w-xmr4-wgxp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35992",
    "datePublished": "2022-09-16T22:20:21.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:53.884Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29518 (GCVE-0-2021-29518)
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx->session_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.905Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx-\u003esession_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:06",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba"
        }
      ],
      "source": {
        "advisory": "GHSA-62gx-355r-9fhg",
        "discovery": "UNKNOWN"
      },
      "title": "Session operations in eager mode lead to null pointer dereferences",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29518",
          "STATE": "PUBLIC",
          "TITLE": "Session operations in eager mode lead to null pointer dereferences"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx-\u003esession_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-62gx-355r-9fhg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29518",
    "datePublished": "2021-05-14T19:36:06",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.905Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29596 (GCVE-0-2021-29596)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.265Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:00",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e"
        }
      ],
      "source": {
        "advisory": "GHSA-4vrf-ff7v-hpgr",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `EmbeddingLookup`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29596",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `EmbeddingLookup`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4vrf-ff7v-hpgr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29596",
    "datePublished": "2021-05-14T19:22:00",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.265Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29525 (GCVE-0-2021-29525)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.490Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:43",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535"
        }
      ],
      "source": {
        "advisory": "GHSA-xm2v-8rrw-w9pm",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `Conv2DBackpropInput`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29525",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `Conv2DBackpropInput`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xm2v-8rrw-w9pm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29525",
    "datePublished": "2021-05-14T19:12:43",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.490Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29557 (GCVE-0-2021-29557)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.068Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:41",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5"
        }
      ],
      "source": {
        "advisory": "GHSA-xw93-v57j-fcgh",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `SparseMatMul`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29557",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `SparseMatMul`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xw93-v57j-fcgh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29557",
    "datePublished": "2021-05-14T19:17:41",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.068Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29606 (GCVE-0-2021-29606)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.312Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:07",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412"
        }
      ],
      "source": {
        "advisory": "GHSA-h4pc-gx2w-f2xv",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in TFLite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29606",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in TFLite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h4pc-gx2w-f2xv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29606",
    "datePublished": "2021-05-14T19:21:07",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.312Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35994 (GCVE-0-2022-35994)
Vulnerability from cvelistv5
Published
2022-09-16 22:20
Modified
2025-04-23 16:59
CWE
Summary
TensorFlow is an open source platform for machine learning. When `CollectiveGather` receives an scalar input `input`, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c1f491817dec39a26be3c574e86a88c30f3c4770. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.941Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35994",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:03.504467Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:59:41.356Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `CollectiveGather` receives an scalar input `input`, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c1f491817dec39a26be3c574e86a88c30f3c4770. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:20:31.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770"
        }
      ],
      "source": {
        "advisory": "GHSA-fhfc-2q7x-929f",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `CollectiveGather` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35994",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `CollectiveGather` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `CollectiveGather` receives an scalar input `input`, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c1f491817dec39a26be3c574e86a88c30f3c4770. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-fhfc-2q7x-929f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35994",
    "datePublished": "2022-09-16T22:20:31.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:59:41.356Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29565 (GCVE-0-2021-29565)
Vulnerability from cvelistv5
Published
2021-05-14 19:16
Modified
2024-08-03 22:11
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec<>()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.248Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec\u003c\u003e()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:56",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f"
        }
      ],
      "source": {
        "advisory": "GHSA-r6pg-pjwc-j585",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in `SparseFillEmptyRows`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29565",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in `SparseFillEmptyRows`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec\u003c\u003e()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-r6pg-pjwc-j585",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29565",
    "datePublished": "2021-05-14T19:16:56",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.248Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15210 (GCVE-0-2020-15210)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
CWE
  • CWE-20 - {"":"Improper Input Validation"}
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.871Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "{\"CWE-20\":\"Improper Input Validation\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-x9j7-x98r-r4w2",
        "discovery": "UNKNOWN"
      },
      "title": "Segmentation fault in tensorflow-lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15210",
          "STATE": "PUBLIC",
          "TITLE": "Segmentation fault in tensorflow-lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-20\":\"Improper Input Validation\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-x9j7-x98r-r4w2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15210",
    "datePublished": "2020-09-25T18:45:30",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.871Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15205 (GCVE-0-2020-15205)
Vulnerability from cvelistv5
Published
2020-09-25 18:45
Modified
2024-08-04 13:08
Severity ?
CWE
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15.4
Version: >= 2.0.0, < 2.0.3
Version: >= 2.1.0, < 2.1.2
Version: >= 2.2.0, < 2.2.1
Version: >= 2.3.0, < 2.3.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.698Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
          },
          {
            "name": "openSUSE-SU-2020:1766",
            "tags": [
              "vendor-advisory",
              "x_refsource_SUSE",
              "x_transferred"
            ],
            "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-29T15:06:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
        },
        {
          "name": "openSUSE-SU-2020:1766",
          "tags": [
            "vendor-advisory",
            "x_refsource_SUSE"
          ],
          "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
        }
      ],
      "source": {
        "advisory": "GHSA-g7p5-5759-qv46",
        "discovery": "UNKNOWN"
      },
      "title": "Data leak in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15205",
          "STATE": "PUBLIC",
          "TITLE": "Data leak in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.4"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.3"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.2"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.1"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 9,
            "baseSeverity": "CRITICAL",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "NONE",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
            },
            {
              "name": "openSUSE-SU-2020:1766",
              "refsource": "SUSE",
              "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g7p5-5759-qv46",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15205",
    "datePublished": "2020-09-25T18:45:57",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.698Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41205 (GCVE-0-2021-41205)
Vulnerability from cvelistv5
Published
2021-11-05 20:10
Modified
2024-08-04 03:08
CWE
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the `QuantizeAndDequantizeV*` operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.437Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the `QuantizeAndDequantizeV*` operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:10:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d"
        }
      ],
      "source": {
        "advisory": "GHSA-49rx-x2rw-pc6f",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41205",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the `QuantizeAndDequantizeV*` operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-49rx-x2rw-pc6f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41205",
    "datePublished": "2021-11-05T20:10:16",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.437Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29537 (GCVE-0-2021-29537)
Vulnerability from cvelistv5
Published
2021-05-14 19:11
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.558Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:11:41",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694"
        }
      ],
      "source": {
        "advisory": "GHSA-8c89-2vwr-chcq",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `QuantizedResizeBilinear`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29537",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `QuantizedResizeBilinear`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8c89-2vwr-chcq",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29537",
    "datePublished": "2021-05-14T19:11:41",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.558Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25662 (GCVE-0-2023-25662)
Vulnerability from cvelistv5
Published
2023-03-24 23:41
Modified
2025-02-19 20:37
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 are vulnerable to integer overflow in EditDistance. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.337Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25662",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:37:26.484915Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:37:37.902Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 are vulnerable to integer overflow in EditDistance. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:41:15.425Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c"
        }
      ],
      "source": {
        "advisory": "GHSA-7jvm-xxmr-v5cw",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to integer overflow in EditDistance"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25662",
    "datePublished": "2023-03-24T23:41:15.425Z",
    "dateReserved": "2023-02-09T20:58:21.857Z",
    "dateUpdated": "2025-02-19T20:37:37.902Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29609 (GCVE-0-2021-29609)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-665 - Improper Initialization
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.266Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-665",
              "description": "CWE-665: Improper Initialization",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:52",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3"
        }
      ],
      "source": {
        "advisory": "GHSA-cjc7-49v2-jp64",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `SparseAdd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29609",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `SparseAdd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.3,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-665: Improper Initialization"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cjc7-49v2-jp64",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29609",
    "datePublished": "2021-05-14T19:20:52",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.266Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41894 (GCVE-0-2022-41894)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:04
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.376Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/72c0bdcb25305b0b36842d746cc61d72658d2941"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41894",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:40:39.752489Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:04:55.192Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels \u003e output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-18T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/72c0bdcb25305b0b36842d746cc61d72658d2941"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121"
        }
      ],
      "source": {
        "advisory": "GHSA-h6q3-vv32-2cq5",
        "discovery": "UNKNOWN"
      },
      "title": "Buffer overflow in `CONV_3D_TRANSPOSE` on TFLite"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41894",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:04:55.192Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29529 (GCVE-0-2021-29529)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
  • CWE-131 - Incorrect Calculation of Buffer Size
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation->upper[i]` might be smaller than `interpolation->lower[i]`. This is an issue if `interpolation->upper[i]` is capped at `in_size-1` as it means that `interpolation->lower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.306Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation-\u003eupper[i]` might be smaller than `interpolation-\u003elower[i]`. This is an issue if `interpolation-\u003eupper[i]` is capped at `in_size-1` as it means that `interpolation-\u003elower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7"
        }
      ],
      "source": {
        "advisory": "GHSA-jfp7-4j67-8r3q",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow caused by rounding",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29529",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow caused by rounding"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation-\u003eupper[i]` might be smaller than `interpolation-\u003elower[i]`. This is an issue if `interpolation-\u003eupper[i]` is capped at `in_size-1` as it means that `interpolation-\u003elower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-131: Incorrect Calculation of Buffer Size"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-jfp7-4j67-8r3q",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29529",
    "datePublished": "2021-05-14T19:12:22",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.306Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23569 (GCVE-0-2022-23569)
Vulnerability from cvelistv5
Published
2022-02-03 12:47
Modified
2025-05-05 16:26
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. Multiple operations in TensorFlow can be used to trigger a denial of service via `CHECK`-fails (i.e., assertion failures). This is similar to TFSA-2021-198 and has similar fixes. We have patched the reported issues in multiple GitHub commits. It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.587Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23569",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:46:26.149610Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-617",
                "description": "CWE-617 Reachable Assertion",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:26:10.887Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. Multiple operations in TensorFlow can be used to trigger a denial of service via `CHECK`-fails (i.e., assertion failures). This is similar to TFSA-2021-198 and has similar fixes. We have patched the reported issues in multiple GitHub commits. It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:47:29.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
        }
      ],
      "source": {
        "advisory": "GHSA-qj5r-f9mv-rffh",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-fails when building invalid tensor shapes in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23569",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-fails when building invalid tensor shapes in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. Multiple operations in TensorFlow can be used to trigger a denial of service via `CHECK`-fails (i.e., assertion failures). This is similar to TFSA-2021-198 and has similar fixes. We have patched the reported issues in multiple GitHub commits. It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qj5r-f9mv-rffh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23569",
    "datePublished": "2022-02-03T12:47:29.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:26:10.887Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35973 (GCVE-0-2022-35973)
Vulnerability from cvelistv5
Published
2022-09-16 21:00
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.641Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35973",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:27.776793Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:49.153Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:00:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
        }
      ],
      "source": {
        "advisory": "GHSA-689c-r7h2-fv9v",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedMatMul` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35973",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedMatMul` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-689c-r7h2-fv9v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35973",
    "datePublished": "2022-09-16T21:00:14.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:49.153Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-23575 (GCVE-0-2022-23575)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:25
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.468Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23575",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:36.136563Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:25:16.716Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:23.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558"
        }
      ],
      "source": {
        "advisory": "GHSA-c94w-c95p-phf8",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23575",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c94w-c95p-phf8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23575",
    "datePublished": "2022-02-04T22:32:23.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:25:16.716Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35941 (GCVE-0-2022-35941)
Vulnerability from cvelistv5
Published
2022-09-16 19:45
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The `AvgPoolOp` function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.193Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35941",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:06.734992Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:10.779Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `AvgPoolOp` function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:45:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98"
        }
      ],
      "source": {
        "advisory": "GHSA-mgmh-g2v6-mqw5",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failure in `AvgPoolOp` in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35941",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failure in `AvgPoolOp` in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `AvgPoolOp` function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mgmh-g2v6-mqw5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35941",
    "datePublished": "2022-09-16T19:45:14.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:10.779Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35938 (GCVE-0-2022-35938)
Vulnerability from cvelistv5
Published
2022-09-16 19:35
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. This issue has been patched in GitHub commit 4142e47e9e31db481781b955ed3ff807a781b494. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.145Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35938",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:17.360810Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:38.377Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. This issue has been patched in GitHub commit 4142e47e9e31db481781b955ed3ff807a781b494. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:35:10.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154"
        }
      ],
      "source": {
        "advisory": "GHSA-3m3g-pf5v-5hpj",
        "discovery": "UNKNOWN"
      },
      "title": "OOB read in `Gather_nd` op in TensorFlow Lite Micro",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35938",
          "STATE": "PUBLIC",
          "TITLE": "OOB read in `Gather_nd` op in TensorFlow Lite Micro"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. This issue has been patched in GitHub commit 4142e47e9e31db481781b955ed3ff807a781b494. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj"
            },
            {
              "name": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494"
            },
            {
              "name": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3m3g-pf5v-5hpj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35938",
    "datePublished": "2022-09-16T19:35:10.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:38.377Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29532 (GCVE-0-2021-29532)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.388Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:07",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a"
        }
      ],
      "source": {
        "advisory": "GHSA-j47f-4232-hvv8",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in `RaggedCross`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29532",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds read in `RaggedCross`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j47f-4232-hvv8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29532",
    "datePublished": "2021-05-14T19:12:07",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.388Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29526 (GCVE-0-2021-29526)
Vulnerability from cvelistv5
Published
2021-05-14 19:12
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.894Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:12:38",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b"
        }
      ],
      "source": {
        "advisory": "GHSA-4vf2-4xcg-65cx",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `Conv2D`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29526",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `Conv2D`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4vf2-4xcg-65cx",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29526",
    "datePublished": "2021-05-14T19:12:38",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.894Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29559 (GCVE-0-2021-29559)
Vulnerability from cvelistv5
Published
2021-05-14 19:17
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.049Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:17:30",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298"
        }
      ],
      "source": {
        "advisory": "GHSA-59q2-x2qc-4c97",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB access in unicode ops",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29559",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB access in unicode ops"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-59q2-x2qc-4c97",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29559",
    "datePublished": "2021-05-14T19:17:30",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.049Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37657 (GCVE-0-2021-37657)
Vulnerability from cvelistv5
Published
2021-08-12 20:50
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.539Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:50:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09"
        }
      ],
      "source": {
        "advisory": "GHSA-5xwc-mrhx-5g3m",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in `MatrixDiagV*` ops in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37657",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in `MatrixDiagV*` ops in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5xwc-mrhx-5g3m",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37657",
    "datePublished": "2021-08-12T20:50:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.539Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35995 (GCVE-0-2022-35995)
Vulnerability from cvelistv5
Published
2022-09-16 22:15
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf6b45244992e2ee543c258e519489659c99fb7f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.521Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35995",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:22.005756Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:27.650Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf6b45244992e2ee543c258e519489659c99fb7f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:15:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f"
        }
      ],
      "source": {
        "advisory": "GHSA-g9h5-vr8m-x2h4",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `AudioSummaryV2` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35995",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `AudioSummaryV2` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf6b45244992e2ee543c258e519489659c99fb7f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-g9h5-vr8m-x2h4",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35995",
    "datePublished": "2022-09-16T22:15:12.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:27.650Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41902 (GCVE-0-2022-41902)
Vulnerability from cvelistv5
Published
2022-12-06 00:00
Modified
2025-04-23 16:32
CWE
Summary
TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.452Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cg88-rpvp-cjv5"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41902",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T15:46:08.198136Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T16:32:33.413Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-787",
              "description": "CWE-787: Out-of-bounds Write",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-12-06T00:00:00.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cg88-rpvp-cjv5"
        }
      ],
      "source": {
        "advisory": "GHSA-cg88-rpvp-cjv5",
        "discovery": "UNKNOWN"
      },
      "title": "Out of bounds write in grappler in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41902",
    "datePublished": "2022-12-06T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-23T16:32:33.413Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41216 (GCVE-0-2021-41216)
Vulnerability from cvelistv5
Published
2021-11-05 22:10
Modified
2024-08-04 03:08
CWE
  • CWE-120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.489Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-120",
              "description": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T22:10:16",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14"
        }
      ],
      "source": {
        "advisory": "GHSA-3ff2-r28g-w7h9",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `Transpose`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41216",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `Transpose`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-120: Buffer Copy without Checking Size of Input (\u0027Classic Buffer Overflow\u0027)"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3ff2-r28g-w7h9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41216",
    "datePublished": "2021-11-05T22:10:17",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.489Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-36004 (GCVE-0-2022-36004)
Vulnerability from cvelistv5
Published
2022-09-16 22:10
Modified
2025-04-23 17:00
CWE
Summary
TensorFlow is an open source platform for machine learning. When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.678Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-36004",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:58:31.429278Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:00:45.804Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T22:10:26.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q"
        }
      ],
      "source": {
        "advisory": "GHSA-mv8m-8x97-937q",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` fail in `tf.random.gamma` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-36004",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` fail in `tf.random.gamma` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-mv8m-8x97-937q",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-36004",
    "datePublished": "2022-09-16T22:10:26.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:00:45.804Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37690 (GCVE-0-2021-37690)
Vulnerability from cvelistv5
Published
2021-08-12 23:10
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.511Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.6,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-416",
              "description": "CWE-416: Use After Free",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T23:10:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1"
        }
      ],
      "source": {
        "advisory": "GHSA-3hxh-8cp2-g4hg",
        "discovery": "UNKNOWN"
      },
      "title": "Use after free and segfault in shape inference functions in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37690",
          "STATE": "PUBLIC",
          "TITLE": "Use after free and segfault in shape inference functions in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 6.6,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "LOW",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-416: Use After Free"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3hxh-8cp2-g4hg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37690",
    "datePublished": "2021-08-12T23:10:16",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.511Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37689 (GCVE-0-2021-37689)
Vulnerability from cvelistv5
Published
2021-08-12 22:00
Modified
2024-08-04 01:23
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.451Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:00:18",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
        }
      ],
      "source": {
        "advisory": "GHSA-wf5p-c75w-w3wh",
        "discovery": "UNKNOWN"
      },
      "title": "Null pointer dereference in TensorFlow Lite MLIR optimizations",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37689",
          "STATE": "PUBLIC",
          "TITLE": "Null pointer dereference in TensorFlow Lite MLIR optimizations"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-wf5p-c75w-w3wh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37689",
    "datePublished": "2021-08-12T22:00:19",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.451Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29547 (GCVE-0-2021-29547)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.426Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:50",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
        }
      ],
      "source": {
        "advisory": "GHSA-4fg4-p75j-w5xj",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29547",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4fg4-p75j-w5xj",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29547",
    "datePublished": "2021-05-14T19:10:50",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.426Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29587 (GCVE-0-2021-29587)
Vulnerability from cvelistv5
Published
2021-05-14 19:22
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `Prepare` step of the `SpaceToDepth` TFLite operator does not check for 0 before division(https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc#L63-L67). An attacker can craft a model such that `params->block_size` would be zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.247Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The `Prepare` step of the `SpaceToDepth` TFLite operator does not check for 0 before division(https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc#L63-L67). An attacker can craft a model such that `params-\u003eblock_size` would be zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:22:48",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7"
        }
      ],
      "source": {
        "advisory": "GHSA-j7rm-8ww4-xx2g",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `SpaceToDepth`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29587",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `SpaceToDepth`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The `Prepare` step of the `SpaceToDepth` TFLite operator does not check for 0 before division(https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc#L63-L67). An attacker can craft a model such that `params-\u003eblock_size` would be zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-j7rm-8ww4-xx2g",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29587",
    "datePublished": "2021-05-14T19:22:48",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.247Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-35935 (GCVE-0-2022-35935)
Vulnerability from cvelistv5
Published
2022-09-16 19:35
Modified
2025-04-23 17:04
CWE
Summary
TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming `input(0)`, `input(1)`, and `input(2)` to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.075Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35935",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T14:00:14.727016Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:04:30.631Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming `input(0)`, `input(1)`, and `input(2)` to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-617",
              "description": "CWE-617: Reachable Assertion",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T19:35:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf"
        }
      ],
      "source": {
        "advisory": "GHSA-97p7-w86h-vcf9",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK` failure in `SobolSample` via missing validation in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35935",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK` failure in `SobolSample` via missing validation in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming `input(0)`, `input(1)`, and `input(2)` to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-617: Reachable Assertion"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-97p7-w86h-vcf9",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35935",
    "datePublished": "2022-09-16T19:35:15.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:04:30.631Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29211 (GCVE-0-2022-29211)
Vulnerability from cvelistv5
Published
2022-05-20 23:20
Modified
2025-04-22 17:57
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.histogram_fixed_width` is vulnerable to a crash when the values array contain `Not a Number` (`NaN`) elements. The implementation assumes that all floating point operations are defined and then converts a floating point result to an integer index. If `values` contains `NaN` then the result of the division is still `NaN` and the cast to `int32` would result in a crash. This only occurs on the CPU implementation. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.256Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/45770"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29211",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:24.583209Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:57:17.184Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.histogram_fixed_width` is vulnerable to a crash when the values array contain `Not a Number` (`NaN`) elements. The implementation assumes that all floating point operations are defined and then converts a floating point result to an integer index. If `values` contains `NaN` then the result of the division is still `NaN` and the cast to `int32` would result in a crash. This only occurs on the CPU implementation. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:20:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/45770"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74"
        }
      ],
      "source": {
        "advisory": "GHSA-xrp2-fhq4-4q3w",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in TensorFlow if `tf.histogram_fixed_width` is called with NaN values",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29211",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in TensorFlow if `tf.histogram_fixed_width` is called with NaN values"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.histogram_fixed_width` is vulnerable to a crash when the values array contain `Not a Number` (`NaN`) elements. The implementation assumes that all floating point operations are defined and then converts a floating point result to an integer index. If `values` contains `NaN` then the result of the division is still `NaN` and the cast to `int32` would result in a crash. This only occurs on the CPU implementation. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/45770",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/45770"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-xrp2-fhq4-4q3w",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29211",
    "datePublished": "2022-05-20T23:20:15.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:57:17.184Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29212 (GCVE-0-2022-29212)
Vulnerability from cvelistv5
Published
2022-05-20 23:15
Modified
2025-04-22 17:57
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.081Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/43661"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29212",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:27.755578Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:57:26.021Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T23:15:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/43661"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123"
        }
      ],
      "source": {
        "advisory": "GHSA-8wwm-6264-x792",
        "discovery": "UNKNOWN"
      },
      "title": "Core dump when loading TFLite models with quantization in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29212",
          "STATE": "PUBLIC",
          "TITLE": "Core dump when loading TFLite models with quantization in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/43661",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/43661"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-8wwm-6264-x792",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29212",
    "datePublished": "2022-05-20T23:15:15.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:57:26.021Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37645 (GCVE-0-2021-37645)
Vulnerability from cvelistv5
Published
2021-08-12 21:05
Modified
2024-08-04 01:23
CWE
  • CWE-681 - Incorrect Conversion between Numeric Types
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: < 2.4.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.313Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-681",
              "description": "CWE-681: Incorrect Conversion between Numeric Types",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:05:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1"
        }
      ],
      "source": {
        "advisory": "GHSA-9w2p-5mgw-p94c",
        "discovery": "UNKNOWN"
      },
      "title": "Integer overflow due to conversion to unsigned in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37645",
          "STATE": "PUBLIC",
          "TITLE": "Integer overflow due to conversion to unsigned in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003c 2.4.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-681: Incorrect Conversion between Numeric Types"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9w2p-5mgw-p94c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37645",
    "datePublished": "2021-08-12T21:05:11",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.313Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-27579 (GCVE-0-2023-27579)
Vulnerability from cvelistv5
Published
2023-03-24 23:05
Modified
2025-02-19 20:45
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. Constructing a tflite model with a paramater `filter_input_channel` of less than 1 gives a FPE. This issue has been patched in version 2.12. TensorFlow will also cherrypick the fix commit on TensorFlow 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.11.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T12:16:35.677Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-27579",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:44:58.148388Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:45:08.642Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.11.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Constructing a tflite model with a paramater `filter_input_channel` of less than 1 gives a FPE. This issue has been patched in version 2.12. TensorFlow will also cherrypick the fix commit on TensorFlow 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-697",
              "description": "CWE-697: Incorrect Comparison",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:05:09.206Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa"
        }
      ],
      "source": {
        "advisory": "GHSA-5w96-866f-6rm8",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow has Floating Point Exception in TFLite in conv kernel"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-27579",
    "datePublished": "2023-03-24T23:05:09.206Z",
    "dateReserved": "2023-03-04T01:03:53.633Z",
    "dateUpdated": "2025-02-19T20:45:08.642Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29597 (GCVE-0-2021-29597)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.260Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:56",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708"
        }
      ],
      "source": {
        "advisory": "GHSA-v52p-hfjf-wg88",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `SpaceToBatchNd`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29597",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `SpaceToBatchNd`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-v52p-hfjf-wg88",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29597",
    "datePublished": "2021-05-14T19:21:56",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.260Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37674 (GCVE-0-2021-37674)
Vulnerability from cvelistv5
Published
2021-08-12 22:40
Modified
2024-08-04 01:23
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.520Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:40:19",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md"
        }
      ],
      "source": {
        "advisory": "GHSA-7ghq-fvr3-pj2x",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `MaxPoolGrad` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37674",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `MaxPoolGrad` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-7ghq-fvr3-pj2x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37674",
    "datePublished": "2021-08-12T22:40:19",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.520Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29548 (GCVE-0-2021-29548)
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op's contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.702Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op\u0027s contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:10:46",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
        }
      ],
      "source": {
        "advisory": "GHSA-p45v-v4pw-77jr",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `QuantizedBatchNormWithGlobalNormalization`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29548",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `QuantizedBatchNormWithGlobalNormalization`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op\u0027s contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-p45v-v4pw-77jr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29548",
    "datePublished": "2021-05-14T19:10:46",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.702Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41214 (GCVE-0-2021-41214)
Vulnerability from cvelistv5
Published
2021-11-05 20:50
Modified
2024-08-04 03:08
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.367Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T20:50:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v"
        }
      ],
      "source": {
        "advisory": "GHSA-vwhq-49r4-gj9v",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to `nullptr` in `tf.ragged.cross`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41214",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to `nullptr` in `tf.ragged.cross`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.8,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vwhq-49r4-gj9v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41214",
    "datePublished": "2021-11-05T20:50:11",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.367Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-7577 (GCVE-0-2018-7577)
Vulnerability from cvelistv5
Published
2019-04-24 16:03
Modified
2024-08-05 06:31
Severity ?
CWE
  • n/a
Summary
Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T06:31:04.602Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2018-05-31T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-24T16:03:02",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-7577",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-7577",
    "datePublished": "2019-04-24T16:03:02",
    "dateReserved": "2018-02-28T00:00:00",
    "dateUpdated": "2024-08-05T06:31:04.602Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2019-16778 (GCVE-0-2019-16778)
Vulnerability from cvelistv5
Published
2019-12-16 20:15
Modified
2024-08-05 01:24
CWE
  • CWE-122 - Heap-based Buffer Overflow
Summary
In TensorFlow before 1.15, a heap buffer overflow in UnsortedSegmentSum can be produced when the Index template argument is int32. In this case data_size and num_segments fields are truncated from int64 to int32 and can produce negative numbers, resulting in accessing out of bounds heap memory. This is unlikely to be exploitable and was detected and fixed internally in TensorFlow 1.15 and 2.0.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 1.15   < 1.15
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T01:24:48.540Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "lessThan": "1.15",
              "status": "affected",
              "version": "\u003c 1.15",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In TensorFlow before 1.15, a heap buffer overflow in UnsortedSegmentSum can be produced when the Index template argument is int32. In this case data_size and num_segments fields are truncated from int64 to int32 and can produce negative numbers, resulting in accessing out of bounds heap memory. This is unlikely to be exploitable and was detected and fixed internally in TensorFlow 1.15 and 2.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 2.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "CWE-122 Heap-based Buffer Overflow",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-12-16T20:15:14",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md"
        }
      ],
      "source": {
        "advisory": "GHSA-844w-j86r-4x2j",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in `UnsortedSegmentSum` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2019-16778",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in `UnsortedSegmentSum` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_affected": "\u003c",
                            "version_name": "\u003c 1.15",
                            "version_value": "1.15"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In TensorFlow before 1.15, a heap buffer overflow in UnsortedSegmentSum can be produced when the Index template argument is int32. In this case data_size and num_segments fields are truncated from int64 to int32 and can produce negative numbers, resulting in accessing out of bounds heap memory. This is unlikely to be exploitable and was detected and fixed internally in TensorFlow 1.15 and 2.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 2.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-122 Heap-based Buffer Overflow"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-844w-j86r-4x2j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2019-16778",
    "datePublished": "2019-12-16T20:15:14",
    "dateReserved": "2019-09-24T00:00:00",
    "dateUpdated": "2024-08-05T01:24:48.540Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29207 (GCVE-0-2022-29207)
Vulnerability from cvelistv5
Published
2022-05-20 22:10
Modified
2025-04-22 17:58
CWE
  • CWE-20 - Improper Input Validation
  • CWE-475 - Undefined Behavior for Input to API
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.201Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29207",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:06.682002Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:48.272Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-475",
              "description": "CWE-475: Undefined Behavior for Input to API",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:10:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498"
        }
      ],
      "source": {
        "advisory": "GHSA-5wpj-c6f7-24x8",
        "discovery": "UNKNOWN"
      },
      "title": "Undefined behavior when users supply invalid resource handles in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29207",
          "STATE": "PUBLIC",
          "TITLE": "Undefined behavior when users supply invalid resource handles in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-475: Undefined Behavior for Input to API"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-5wpj-c6f7-24x8",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29207",
    "datePublished": "2022-05-20T22:10:12.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:48.272Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29205 (GCVE-0-2022-29205)
Vulnerability from cvelistv5
Published
2022-05-20 22:25
Modified
2025-04-22 17:58
CWE
  • CWE-908 - Use of Uninitialized Resource
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, there is a potential for segfault / denial of service in TensorFlow by calling `tf.compat.v1.*` ops which don't yet have support for quantized types, which was added after migration to TensorFlow 2.x. In these scenarios, since the kernel is missing, a `nullptr` value is passed to `ParseDimensionValue` for the `py_value` argument. Then, this is dereferenced, resulting in segfault. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.256Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29205",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:46:53.232402Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:30.888Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, there is a potential for segfault / denial of service in TensorFlow by calling `tf.compat.v1.*` ops which don\u0027t yet have support for quantized types, which was added after migration to TensorFlow 2.x. In these scenarios, since the kernel is missing, a `nullptr` value is passed to `ParseDimensionValue` for the `py_value` argument. Then, this is dereferenced, resulting in segfault. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:25:14.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482"
        }
      ],
      "source": {
        "advisory": "GHSA-54ch-gjq5-4976",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault due to missing support for quantized types in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29205",
          "STATE": "PUBLIC",
          "TITLE": "Segfault due to missing support for quantized types in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, there is a potential for segfault / denial of service in TensorFlow by calling `tf.compat.v1.*` ops which don\u0027t yet have support for quantized types, which was added after migration to TensorFlow 2.x. In these scenarios, since the kernel is missing, a `nullptr` value is passed to `ParseDimensionValue` for the `py_value` argument. Then, this is dereferenced, resulting in segfault. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-476: NULL Pointer Dereference"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-54ch-gjq5-4976",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29205",
    "datePublished": "2022-05-20T22:25:14.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:30.888Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21731 (GCVE-0-2022-21731)
Vulnerability from cvelistv5
Published
2022-02-03 11:37
Modified
2025-05-05 16:32
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.860Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21731",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:26.571505Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-843",
                "description": "CWE-843 Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:32:12.677Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T11:37:56.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358"
        }
      ],
      "source": {
        "advisory": "GHSA-m4hf-j54p-p353",
        "discovery": "UNKNOWN"
      },
      "title": "Type confusion leading to segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21731",
          "STATE": "PUBLIC",
          "TITLE": "Type confusion leading to segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m4hf-j54p-p353",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21731",
    "datePublished": "2022-02-03T11:37:56.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:32:12.677Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37668 (GCVE-0-2021-37668)
Vulnerability from cvelistv5
Published
2021-08-12 22:30
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.519Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:30:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233"
        }
      ],
      "source": {
        "advisory": "GHSA-2wmv-37vq-52g5",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TensorFlow Lite `tf.raw_ops.UnravelIndex`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37668",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TensorFlow Lite `tf.raw_ops.UnravelIndex`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-2wmv-37vq-52g5",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37668",
    "datePublished": "2021-08-12T22:30:12",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.519Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37656 (GCVE-0-2021-37656)
Vulnerability from cvelistv5
Published
2021-08-12 20:50
Modified
2024-08-04 01:23
CWE
  • CWE-824 - Access of Uninitialized Pointer
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.518Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-824",
              "description": "CWE-824: Access of Uninitialized Pointer",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T20:50:22",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece"
        }
      ],
      "source": {
        "advisory": "GHSA-4xfp-4pfp-89wg",
        "discovery": "UNKNOWN"
      },
      "title": "Reference binding to nullptr in `RaggedTensorToSparse` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37656",
          "STATE": "PUBLIC",
          "TITLE": "Reference binding to nullptr in `RaggedTensorToSparse` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 7.1,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-824: Access of Uninitialized Pointer"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-4xfp-4pfp-89wg",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37656",
    "datePublished": "2021-08-12T20:50:22",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.518Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-21734 (GCVE-0-2022-21734)
Vulnerability from cvelistv5
Published
2022-02-03 12:59
Modified
2025-05-05 16:31
CWE
  • n/a
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T02:53:35.374Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-21734",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-25T15:47:12.603964Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "problemTypes": [
          {
            "descriptions": [
              {
                "cweId": "CWE-843",
                "description": "CWE-843 Access of Resource Using Incompatible Type (\u0027Type Confusion\u0027)",
                "lang": "en",
                "type": "CWE"
              }
            ]
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-05-05T16:31:55.514Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-03T12:59:18.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550"
        }
      ],
      "source": {
        "advisory": "GHSA-gcvh-66ff-4mwm",
        "discovery": "UNKNOWN"
      },
      "title": "`CHECK`-failures in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-21734",
          "STATE": "PUBLIC",
          "TITLE": "`CHECK`-failures in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-gcvh-66ff-4mwm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-21734",
    "datePublished": "2022-02-03T12:59:18.000Z",
    "dateReserved": "2021-11-16T00:00:00.000Z",
    "dateUpdated": "2025-05-05T16:31:55.514Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-29195 (GCVE-0-2022-29195)
Vulnerability from cvelistv5
Published
2022-05-20 22:00
Modified
2025-04-22 17:58
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.StagePeek` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `index` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.6.4
Version: >= 2.7.0rc0, < 2.7.2
Version: >= 2.8.0rc0, < 2.8.1
Version: >= 2.9.0rc0, < 2.9.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T06:17:54.372Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-29195",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:47:10.808356Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T17:58:58.035Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.6.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.7.0rc0, \u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0rc0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0rc0, \u003c 2.9.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.StagePeek` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `index` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-05-20T22:00:15.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26"
        }
      ],
      "source": {
        "advisory": "GHSA-h48f-q7rw-hvr7",
        "discovery": "UNKNOWN"
      },
      "title": "Missing validation causes denial of service in TensorFlow via `StagePeek`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-29195",
          "STATE": "PUBLIC",
          "TITLE": "Missing validation causes denial of service in TensorFlow via `StagePeek`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.6.4"
                          },
                          {
                            "version_value": "\u003e= 2.7.0rc0, \u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0rc0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0rc0, \u003c 2.9.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.StagePeek` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `index` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-h48f-q7rw-hvr7",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-29195",
    "datePublished": "2022-05-20T22:00:15.000Z",
    "dateReserved": "2022-04-13T00:00:00.000Z",
    "dateUpdated": "2025-04-22T17:58:58.035Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29598 (GCVE-0-2021-29598)
Vulnerability from cvelistv5
Published
2021-05-14 19:21
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params->rank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.076Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params-\u003erank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:21:50",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682"
        }
      ],
      "source": {
        "advisory": "GHSA-pmpr-55fj-r229",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite\u0027s implementation of `SVDF`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29598",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite\u0027s implementation of `SVDF`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params-\u003erank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pmpr-55fj-r229",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29598",
    "datePublished": "2021-05-14T19:21:51",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.076Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2023-25660 (GCVE-0-2023-25660)
Vulnerability from cvelistv5
Published
2023-03-24 23:44
Modified
2025-02-19 20:30
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when the parameter `summarize` of `tf.raw_ops.Print` is zero, the new method `SummarizeArray<bool>` will reference to a nullptr, leading to a seg fault. A fix is included in TensorFlow version 2.12 and version 2.11.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-02T11:25:19.349Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj",
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj"
          },
          {
            "name": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1",
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2023-25660",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "yes"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-02-19T20:30:06.336761Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-02-19T20:30:18.395Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when the parameter `summarize` of `tf.raw_ops.Print` is zero, the new method `SummarizeArray\u003cbool\u003e` will reference to a nullptr, leading to a seg fault. A fix is included in TensorFlow version 2.12 and version 2.11.1.\n"
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 7.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2023-03-24T23:44:30.233Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1"
        }
      ],
      "source": {
        "advisory": "GHSA-qjqc-vqcf-5qvj",
        "discovery": "UNKNOWN"
      },
      "title": "TensorFlow vulnerable to seg fault in `tf.raw_ops.Print`"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2023-25660",
    "datePublished": "2023-03-24T23:44:30.233Z",
    "dateReserved": "2023-02-09T20:58:21.857Z",
    "dateUpdated": "2025-02-19T20:30:18.395Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29522 (GCVE-0-2021-29522)
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.1.4
Version: >= 2.2.0, < 2.2.3
Version: >= 2.3.0, < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.710Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:35:44",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
        }
      ],
      "source": {
        "advisory": "GHSA-c968-pq7h-7fxv",
        "discovery": "UNKNOWN"
      },
      "title": "Division by 0 in `Conv3DBackprop*`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29522",
          "STATE": "PUBLIC",
          "TITLE": "Division by 0 in `Conv3DBackprop*`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c968-pq7h-7fxv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29522",
    "datePublished": "2021-05-14T19:35:44",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.710Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37685 (GCVE-0-2021-37685)
Vulnerability from cvelistv5
Published
2021-08-12 22:15
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.547Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T22:15:10",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
        }
      ],
      "source": {
        "advisory": "GHSA-c545-c4f9-rf6v",
        "discovery": "UNKNOWN"
      },
      "title": "Heap OOB in TensorFlow Lite",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37685",
          "STATE": "PUBLIC",
          "TITLE": "Heap OOB in TensorFlow Lite"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "NONE",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-c545-c4f9-rf6v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37685",
    "datePublished": "2021-08-12T22:15:10",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.547Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-37680 (GCVE-0-2021-37680)
Vulnerability from cvelistv5
Published
2021-08-12 21:45
Modified
2024-08-04 01:23
CWE
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T01:23:01.555Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.3.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-08-12T21:45:17",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f"
        }
      ],
      "source": {
        "advisory": "GHSA-cfpj-3q4c-jhvr",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in TFLite in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-37680",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in TFLite in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.1"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.3"
                          },
                          {
                            "version_value": "\u003c 2.3.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cfpj-3q4c-jhvr",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-37680",
    "datePublished": "2021-08-12T21:45:17",
    "dateReserved": "2021-07-29T00:00:00",
    "dateUpdated": "2024-08-04T01:23:01.555Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-29611 (GCVE-0-2021-29611)
Vulnerability from cvelistv5
Published
2021-05-14 19:20
Modified
2024-08-03 22:11
CWE
  • CWE-665 - Improper Initialization
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.3.3
Version: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:06.304Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-665",
              "description": "CWE-665: Improper Initialization",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:20:43",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6"
        }
      ],
      "source": {
        "advisory": "GHSA-9rpc-5v9q-5r7f",
        "discovery": "UNKNOWN"
      },
      "title": "Incomplete validation in `SparseReshape`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29611",
          "STATE": "PUBLIC",
          "TITLE": "Incomplete validation in `SparseReshape`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 3.6,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-665: Improper Initialization"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-9rpc-5v9q-5r7f",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29611",
    "datePublished": "2021-05-14T19:20:43",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:06.304Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2022-41889 (GCVE-0-2022-41889)
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2025-04-22 16:05
CWE
  • CWE-476 - NULL Pointer Dereference
Summary
TensorFlow is an open source platform for machine learning. If a list of quantized tensors is assigned to an attribute, the pywrap code fails to parse the tensor and returns a `nullptr`, which is not caught. An example can be seen in `tf.compat.v1.extract_volume_patches` by passing in quantized tensors as input `ksizes`. We have patched the issue in GitHub commit e9e95553e5411834d215e6770c81a83a3d0866ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.10.0, < 2.10.1
Version: >= 2.9.0, < 2.9.3
Version: < 2.8.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.375Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xxcj-rhqg-m46g"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e9e95553e5411834d215e6770c81a83a3d0866ce"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-41889",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:42:23.688470Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T16:05:44.120Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.8.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If a list of quantized tensors is assigned to an attribute, the pywrap code fails to parse the tensor and returns a `nullptr`, which is not caught. An example can be seen in `tf.compat.v1.extract_volume_patches` by passing in quantized tensors as input `ksizes`. We have patched the issue in GitHub commit e9e95553e5411834d215e6770c81a83a3d0866ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-476",
              "description": "CWE-476: NULL Pointer Dereference",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-01-15T16:59:21.096Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xxcj-rhqg-m46g",
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xxcj-rhqg-m46g"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/commit/e9e95553e5411834d215e6770c81a83a3d0866ce",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e9e95553e5411834d215e6770c81a83a3d0866ce"
        },
        {
          "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc",
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
        }
      ],
      "source": {
        "advisory": "GHSA-xxcj-rhqg-m46g",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault via invalid attributes in `pywrap_tfe_src.cc` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41889",
    "datePublished": "2022-11-18T00:00:00.000Z",
    "dateReserved": "2022-09-30T00:00:00.000Z",
    "dateUpdated": "2025-04-22T16:05:44.120Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2018-7576 (GCVE-0-2018-7576)
Vulnerability from cvelistv5
Published
2019-04-23 20:44
Modified
2024-08-05 06:31
Severity ?
CWE
  • n/a
Summary
Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent.
Impacted products
Vendor Product Version
n/a n/a Version: n/a
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-05T06:31:04.510Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "n/a",
          "vendor": "n/a",
          "versions": [
            {
              "status": "affected",
              "version": "n/a"
            }
          ]
        }
      ],
      "datePublic": "2018-05-31T00:00:00",
      "descriptions": [
        {
          "lang": "en",
          "value": "Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent."
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "description": "n/a",
              "lang": "en",
              "type": "text"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2019-04-23T20:44:46",
        "orgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
        "shortName": "mitre"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md"
        }
      ],
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "cve@mitre.org",
          "ID": "CVE-2018-7576",
          "STATE": "PUBLIC"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "n/a",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "n/a"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "n/a"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent."
            }
          ]
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "n/a"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md"
            }
          ]
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "8254265b-2729-46b6-b9e3-3dfca2d5bfca",
    "assignerShortName": "mitre",
    "cveId": "CVE-2018-7576",
    "datePublished": "2019-04-23T20:44:46",
    "dateReserved": "2018-02-28T00:00:00",
    "dateUpdated": "2024-08-05T06:31:04.510Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2021-41195 (GCVE-0-2021-41195)
Vulnerability from cvelistv5
Published
2021-11-05 19:50
Modified
2024-08-04 03:08
CWE
  • CWE-190 - Integer Overflow or Wraparound
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.6.0, < 2.6.1
Version: >= 2.5.0, < 2.5.2
Version: < 2.4.4
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T03:08:31.297Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/46888"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/pull/51733"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.5.0, \u003c 2.5.2"
            },
            {
              "status": "affected",
              "version": "\u003c 2.4.4"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-190",
              "description": "CWE-190: Integer Overflow or Wraparound",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-11-05T19:50:12",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/46888"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/pull/51733"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429"
        }
      ],
      "source": {
        "advisory": "GHSA-cq76-mxrc-vchh",
        "discovery": "UNKNOWN"
      },
      "title": "Crash in `tf.math.segment_*` operations",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-41195",
          "STATE": "PUBLIC",
          "TITLE": "Crash in `tf.math.segment_*` operations"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.1"
                          },
                          {
                            "version_value": "\u003e= 2.5.0, \u003c 2.5.2"
                          },
                          {
                            "version_value": "\u003c 2.4.4"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "HIGH",
            "baseScore": 5.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-190: Integer Overflow or Wraparound"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/46888",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/46888"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/pull/51733",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/pull/51733"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-cq76-mxrc-vchh",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-41195",
    "datePublished": "2021-11-05T19:50:12",
    "dateReserved": "2021-09-15T00:00:00",
    "dateUpdated": "2024-08-04T03:08:31.297Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2020-15196 (GCVE-0-2020-15196)
Vulnerability from cvelistv5
Published
2020-09-25 18:40
Modified
2024-08-04 13:08
CWE
  • CWE-119 - {"":"Improper Restriction of Operations within the Bounds of a Memory Buffer"}
  • CWE-122 - {"":"Heap-based Buffer Overflow"}
Summary
In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don't validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: = 2.3.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:08:22.710Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
          },
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "= 2.3.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-119",
              "description": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        },
        {
          "descriptions": [
            {
              "cweId": "CWE-122",
              "description": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-09-25T18:40:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
        },
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
        }
      ],
      "source": {
        "advisory": "GHSA-pg59-2f92-5cph",
        "discovery": "UNKNOWN"
      },
      "title": "Heap buffer overflow in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15196",
          "STATE": "PUBLIC",
          "TITLE": "Heap buffer overflow in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "= 2.3.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 8.5,
            "baseSeverity": "HIGH",
            "confidentialityImpact": "HIGH",
            "integrityImpact": "HIGH",
            "privilegesRequired": "LOW",
            "scope": "CHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-119\":\"Improper Restriction of Operations within the Bounds of a Memory Buffer\"}"
                }
              ]
            },
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "{\"CWE-122\":\"Heap-based Buffer Overflow\"}"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-pg59-2f92-5cph",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15196",
    "datePublished": "2020-09-25T18:40:36",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:08:22.710Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr->config_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. When building an XLA compilation cache, if default settings are used, TensorFlow triggers a null pointer dereference. In the default scenario, all devices are allowed, so `flr-\u003econfig_proto` is `nullptr`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Cuando se construye una cach\u00e9 de compilaci\u00f3n de XLA, si es usada la configuraci\u00f3n predeterminada, TensorFlow desencadena una desreferencia de puntero null. En el escenario por defecto, son permitidos todos los dispositivos, por lo que \"flr-)config_proto\" es \"nullptr\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23595",
  "lastModified": "2024-11-21T06:48:53.540",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.6,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.460",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/jit/xla_platform_info.cc#L43-L104"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e21af685e1828f7ca65038307df5cc06de4479e8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fpcp-9h7m-ffpx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow's `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, changing the TensorFlow\u0027s `SavedModel` protocol buffer and altering the name of required keys results in segfaults and data corruption while loading the model. This can cause a denial of service in products using `tensorflow-serving` or other inference-as-a-service installments. Fixed were added in commits f760f88b4267d981e13f4b302c437ae800445968 and fcfef195637c6e365577829c4d67681695956e7d (both going into TensorFlow 2.2.0 and 2.3.0 but not yet backported to earlier versions). However, this was not enough, as #41097 reports a different failure mode. The issue is patched in commit adf095206f25471e864a8e63a0f1caef53a0e3a6, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, cambiar el b\u00fafer del protocolo \"SavedModel\" de TensorFlow y alterar el nombre de las claves requeridas resulta en fallos de segmentaci\u00f3n y una corrupci\u00f3n de los datos mientras se carga el modelo.\u0026#xa0;Esto puede causar una denegaci\u00f3n de servicio en productos que usan \"tensorflow-serve\" u otras cuotas de inferencia como un servicio.\u0026#xa0;Los arreglos se agregaron en las commits f760f88b4267d981e13f4b302c437ae800445968 y fcfef195637c6e365577829c4d67681695956e7d (ambas en TensorFlow versiones 2.2.0 y 2.3.0 pero a\u00fan no se han actualizado a versiones anteriores).\u0026#xa0;Sin embargo, esto no fue suficiente, ya que #41097 reporta un modo de fallo diferente.\u0026#xa0;El problema es parcheado en el commit adf095206f25471e864a8e63a0f1caef53a0e3a6, y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15206",
  "lastModified": "2024-11-21T05:05:05.090",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.0,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.917",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/adf095206f25471e864a8e63a0f1caef53a0e3a6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w5gh-2wr2-pm6g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered.
Impacted products
Vendor Product Version
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The TFG dialect of TensorFlow (MLIR) makes several assumptions about the incoming `GraphDef` before converting it to the MLIR-based dialect. If an attacker changes the `SavedModel` format on disk to invalidate these assumptions and the `GraphDef` is then converted to MLIR-based IR then they can cause a crash in the Python interpreter. Under certain scenarios, heap OOB read/writes are possible. These issues have been discovered via fuzzing and it is possible that more weaknesses exist. We will patch them as they are discovered."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. El dialecto TFG de TensorFlow (MLIR) hace varias suposiciones sobre el \"GraphDef\" entrante antes de convertirlo al dialecto basado en MLIR. Si un atacante cambia el formato del \"SavedModel\" en el disco para invalidar estas suposiciones y el \"GraphDef\" es entonces convertido al IR basado en MLIR, entonces pueden causar un bloqueo en el int\u00e9rprete de Python. Bajo determinados escenarios, es posible la lectura/escritura de OOB en la pila. Estos problemas han sido detectados por medio de fuzzing y es posible que se presenten m\u00e1s debilidades. Los parchearemos a medida que son detectadas"
    }
  ],
  "id": "CVE-2022-23594",
  "lastModified": "2024-11-21T06:48:53.407",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.0,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.410",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9x52-887g-fhc2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/tree/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/ir/importexport"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 13:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"FractionalMaxPool\" puede hacer que un proceso de TensorFlow sea bloqueado por medio de una divisi\u00f3n por 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit enTensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21735",
  "lastModified": "2025-05-05T17:17:49.943",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T13:15:08.253",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_max_pool_op.cc#L36-L192"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba4e8ac4dc2991e350d5cc407f8598c8d4ee70fb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-87v6-crgm-2gfj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `MirrorPadGrad` is given outsize input `paddings`, TensorFlow will give a heap OOB error. We have patched the issue in GitHub commit 717ca98d8c3bba348ff62281fdf38dcb5ea1ec92. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `MirrorPadGrad` is given outsize input `paddings`, TensorFlow will give a heap OOB error. We have patched the issue in GitHub commit 717ca98d8c3bba348ff62281fdf38dcb5ea1ec92. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a \"MirrorPadGrad\" se le asignan \"rellenos\" de entrada de gran tama\u00f1o, TensorFlow generar\u00e1 un error OOB de mont\u00f3n. Hemos solucionado el problema en el commit de GitHub 717ca98d8c3bba348ff62281fdf38dcb5ea1ec92. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41895",
  "lastModified": "2024-11-21T07:24:00.913",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:18.107",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/717ca98d8c3bba348ff62281fdf38dcb5ea1ec92"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gq2j-cr96-gvqx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/717ca98d8c3bba348ff62281fdf38dcb5ea1ec92"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gq2j-cr96-gvqx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.summary.create_file_writer` is called with non-scalar arguments code crashes due to a `CHECK`-fail. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.summary.create_file_writer` is called with non-scalar arguments code crashes due to a `CHECK`-fail. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, si se llama a \"tf.summary.create_file_writer\" con argumentos no escalares, el c\u00f3digo es bloqueado debido a un fallo de \"CHECK\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41200",
  "lastModified": "2024-11-21T06:25:45.353",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:08.037",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/874bda09e6702cd50bac90b453b50bcc65b2769e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46909"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh8h-7j2j-qv4f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/874bda09e6702cd50bac90b453b50bcc65b2769e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46909"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh8h-7j2j-qv4f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"mlir::tfg::ConvertGenericFunctionToFunctionDef\" recibe atributos de funci\u00f3n vac\u00edos, da una derivaci\u00f3n nula. Hemos parcheado el problema en el commit 1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36011",
  "lastModified": "2024-11-21T07:12:10.727",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.010",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv43-93gv-vm8f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-05-04 15:15
Modified
2024-11-21 04:03
Summary
TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5A6AB785-124B-4718-89E4-354650C640B2",
              "versionEndExcluding": "1.7.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow before 1.7.0 has an integer overflow that causes an out-of-bounds read, possibly causing disclosure of the contents of process memory. This occurs in the DecodeBmp feature of the BMP decoder in core/kernels/decode_bmp_op.cc."
    },
    {
      "lang": "es",
      "value": "ensorFlow versiones anteriores a la versi\u00f3n  1.7.0, tiene un desbordamiento de enteros que causa una lectura fuera de l\u00edmites, posiblemente causando una revelaci\u00f3n del contenido de la memoria del proceso. Esto ocurre en la funcionalidad DecodeBmp del decodificador BMP en el archivo core/kernels/decode_bmp_op.cc."
    }
  ],
  "id": "CVE-2018-21233",
  "lastModified": "2024-11-21T04:03:14.750",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 4.3,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-05-04T15:15:13.480",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md"
    },
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-001.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49f73c55d56edffebde4bca4a407ad69c1cae433"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.RaggedTensorToVariant` with arguments specifying an invalid ragged tensor results in a null pointer dereference. The implementation of `RaggedTensorToVariant` operations(https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) does not validate that the ragged tensor argument is non-empty. Since `batched_ragged` contains no elements, `batched_ragged.splits` is a null vector, thus `batched_ragged.splits(0)` will result in dereferencing `nullptr`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Llamar a \"tf.raw_ops.RaggedTensorToVariant\" con argumentos que especifican un tensor irregular no v\u00e1lido resulta en una desreferencia del puntero null.\u0026#xa0;La implementaci\u00f3n de las operaciones \"RaggedTensorToVariant\" (https://github.com/tensorflow/tensorflow/blob/904b3926ed1c6c70380d5313d282d248a776baa1/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L39-L40) no comprueba que el argumento no est\u00e1 vac\u00edo .\u0026#xa0;Dado que \"batched_ragged\" no contiene elementos, \"batched_ragged.splits\" es un vector null, por lo que \"batched_ragged.splits(0)\" resultar\u00e1 en una eliminaci\u00f3n de referencias de \"nullptr\".\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29516",
  "lastModified": "2024-11-21T06:01:17.490",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.347",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b055b9c474cd376259dde8779908f9eeaf097d93"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84mw-34w6-2q43"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of concatenation is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76). An attacker can craft a model such that the dimensions of one of the concatenation input overflow the values of `int`. TFLite uses `int` to represent tensor dimensions, whereas TF uses `int64`. Hence, valid TF models can trigger an integer overflow when converted to TFLite format. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de TFLite de la concatenaci\u00f3n es vulnerable a un problema de desbordamiento de enteros (https://github.com/tensorflow/tensorflow/blob/7b7352a724b690b11bfaae2cd54bc3907daf6285/tensorflow/lite/kernels/concatenation.cc#L70-L76).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que las dimensiones de una de las entradas de concatenaci\u00f3n desborden los valores de \"int\".\u0026#xa0;TFLite usa \"int\" para representar las dimensiones del tensor, mientras que TF usa \"int64\".\u0026#xa0;Por lo tanto, los modelos TF v\u00e1lidos pueden desencadenar un desbordamiento de enteros cuando se convierten al formato TFLite.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29601",
  "lastModified": "2024-11-21T06:01:28.113",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 6.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.487",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4253f96a58486ffe84b61c0415bb234a4632ee73"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c84-4hx6-xmm4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.UnicodeEncode`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) reads the first dimension of the `input_splits` tensor before validating that this tensor is not empty. We have patched the issue in GitHub commit 2e0ee46f1a47675152d3d865797a18358881d7a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en \"tf.raw_ops.UnicodeEncode\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unicode_ops.cc#L533-L539) lee la primera dimensi\u00f3n del tensor \"input_splits\" antes de comprender que este tensor no est\u00e1 vac\u00edo. Hemos parcheado el problema en el commit 2e0ee46f1a47675152d3d865797a18358881d7a6 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37667",
  "lastModified": "2024-11-21T06:15:39.283",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.340",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2e0ee46f1a47675152d3d865797a18358881d7a6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w74j-v8xh-3w5h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.3.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the `splits` tensor has the minimum required number of elements. Code uses this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits` tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the operating system. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a la versi\u00f3n 2.3.1, \"RaggedCountSparseOutput\" no comprueba que los argumentos de entrada formen un tensor irregular v\u00e1lido.\u0026#xa0;En particular, no existe comprobaci\u00f3n de que el tensor \"splits\" tenga el n\u00famero m\u00ednimo requerido de elementos.\u0026#xa0;El c\u00f3digo usa esta cantidad para inicializar una estructura de datos diferente.\u0026#xa0;Dado que \"BatchedMap\" es equivalente a un vector, necesita tener al menos un elemento para que no sea \"nullptr\".\u0026#xa0;Si el usuario pasa un tensor \"splits\" que se encuentra vac\u00edo o tiene exactamente un elemento, obtenemos una se\u00f1al \"SIGABRT\" generada por el sistema operativo.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15199",
  "lastModified": "2024-11-21T05:05:04.017",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.167",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x5cp-9pcf-pp3h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has the same shape as the `values` one. The values in these tensors are always accessed in parallel. Thus, a shape mismatch can result in accesses outside the bounds of heap allocated buffers. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a la versi\u00f3n 2.3.1, la implementaci\u00f3n de \"SparseCountSparseOutput\" no comprueba que los argumentos de entrada formen un tensor disperso v\u00e1lido.\u0026#xa0;En particular, no existe comprobaci\u00f3n de que el tensor \"indices\" tenga la misma forma que el \"values\".\u0026#xa0;Los valores de estos tensores siempre se acceden en paralelo.\u0026#xa0;Por lo tanto, una discrepancia de forma puede resultar en accesos fuera de l\u00edmites de los b\u00faferes asignados de la pila.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15198",
  "lastModified": "2024-11-21T05:05:03.877",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 5.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 5.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 5.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.7,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.057",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jc87-6vpp-7ff3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`'s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthwiseConv` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwise_conv.cc#L287-L288). An attacker can craft a model such that `input`\u0027s fourth dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador de TFLite \"DepthwiseConv\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/depthwiseL287-Lcc#88.\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que la cuarta dimensi\u00f3n de \"input\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29602",
  "lastModified": "2024-11-21T06:01:28.237",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.530",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cbda3c6b2dbbd3fbdc482ff8c0170a78ec2e97d0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rf3h-xgv5-2q39"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar<T>()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by controlling the values of `num_segments` tensor argument for `UnsortedSegmentJoin`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) assumes that the `num_segments` tensor is a valid scalar. Since the tensor is empty the `CHECK` involved in `.scalar\u003cT\u003e()()` that checks that the number of elements is exactly 1 will be invalidated and this would result in process termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio al controlar los valores del argumento tensorial \"num_segments\" para \"UnsortedSegmentJoin\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/a2a607db15c7cd01d754d37e5448d72a13491bdb/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L93) asume que el tensor \"num_segments\" es un tensor v\u00e1lido.\u0026#xa0;Dado que el tensor est\u00e1 vac\u00edo, el \"CHECK\" involucrado en \".scalar (T)()()\" que comprueba que el n\u00famero de elementos es exactamente 1 ser\u00e1 invalidado y esto resultar\u00eda en una terminaci\u00f3n del proceso.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29552",
  "lastModified": "2024-11-21T06:01:21.960",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.070",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/704866eabe03a9aeda044ec91a8d0c83fc1ebdbe"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jhq9-wm9m-cf89"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite computation for size of output after padding, `ComputeOutSize`(https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), does not check that the `stride` argument is not 0 before doing the division. Users can craft special models such that `ComputeOutSize` is called with `stride` set to 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite computation for size of output after padding, `ComputeOutSize`(https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), does not check that the `stride` argument is not 0 before doing the division. Users can craft special models such that `ComputeOutSize` is called with `stride` set to 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;El computation TFLite para el tama\u00f1o de salida despu\u00e9s del relleno, la funci\u00f3n \"ComputeOutSize\" (https://github.com/tensorflow/tensorflow/blob/0c9692ae7b1671c983569e5d3de5565843d500cf/tensorflow/lite/kernels/padding.h#L43-L55), no comprueba que el argumento \"stride\" no es 0 versiones anteriores a hacer la divisi\u00f3n.\u0026#xa0;Los usuarios pueden dise\u00f1ar modelos especiales tales que se llame a la funci\u00f3n \"ComputeOutSize\" con \"stride\" establecido en 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29585",
  "lastModified": "2024-11-21T06:01:26.063",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.557",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49847ae69a4e1a97ae7f2db5e217c77721e37948"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv78-g7wq-mhp4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can read data outside of bounds of heap allocated buffer in `tf.raw_ops.QuantizeAndDequantizeV3`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) does not validate the value of user supplied `axis` attribute before using it to index in the array backing the `input` argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can read data outside of bounds of heap allocated buffer in `tf.raw_ops.QuantizeAndDequantizeV3`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) does not validate the value of user supplied `axis` attribute before using it to index in the array backing the `input` argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede leer datos fuera de l\u00edmites del b\u00fafer asignado a la pila en \"tf.raw_ops.QuantizeAndDequantizeV3\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/11ff7f80667e6490d7b5174aa6bf5e01886e770f/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L237) no comprueba el valor del atributo \"axis suministrado por el usuario antes de usar index en una matriz que respalda el argumento \"input\".\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29553",
  "lastModified": "2024-11-21T06:01:22.083",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.117",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/99085e8ff02c3763a0ec2263e44daec416f6a387"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h9px-9vqg-222h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. If a user does not provide a valid padding value to `tf.raw_ops.MatrixDiagPartOp`, then the code triggers a null pointer dereference (if input is empty) or produces invalid behavior, ignoring all values after the first. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) reads the first value from a tensor buffer without first checking that the tensor has values to read from. We have patched the issue in GitHub commit 482da92095c4d48f8784b1f00dda4f81c28d2988. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Si un usuario no proporciona un valor de relleno v\u00e1lido a \"tf.raw_ops.MatrixDiagPartOp\", entonces el c\u00f3digo desencadena una desreferencia de puntero null (si la entrada est\u00e1 vac\u00eda) o produce un comportamiento no v\u00e1lido, ignorando todos los valores despu\u00e9s del primero. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L89) lee el primer valor de un buffer de tensor sin comprobar primero que el tensor presenta valores para leer. Hemos parcheado el problema en el commit 482da92095c4d48f8784b1f00dda4f81c28d2988 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37643",
  "lastModified": "2024-11-21T06:15:35.610",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:08.873",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/482da92095c4d48f8784b1f00dda4f81c28d2988"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fcwc-p4fc-c5cc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.3.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.3.1, the `SparseCountSparseOutput` implementation does not validate that the input arguments form a valid sparse tensor. In particular, there is no validation that the `indices` tensor has rank 2. This tensor must be a matrix because code assumes its elements are accessed as elements of a matrix. However, malicious users can pass in tensors of different rank, resulting in a `CHECK` assertion failure and a crash. This can be used to cause denial of service in serving installations, if users are allowed to control the components of the input sparse tensor. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a la versi\u00f3n 2.3.1, la implementaci\u00f3n de \"SparseCountSparseOutput\" no comprueba que los argumentos de entrada formen un tensor disperso v\u00e1lido.\u0026#xa0;En particular, no existe comprobaci\u00f3n de que el tensor de \"\u00edndices\" tenga rango 2. Este tensor debe ser una matriz porque el c\u00f3digo asume que se accede a sus elementos como elementos de una matriz.\u0026#xa0;Sin embargo, los usuarios maliciosos pueden pasar tensores de diferente rango, lo que resulta en un fallo de aserci\u00f3n \"CHECK\" y un bloqueo.\u0026#xa0;Esto  puede ser usado para causar denegaci\u00f3n de servicio en instalaciones de servicio, si los usuarios pueden controlar los componentes del tensor disperso de entrada.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15197",
  "lastModified": "2024-11-21T05:05:03.693",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.5,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 6.8,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 4.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 4.0,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.963",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qc53-44cj-vfvx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1.
Impacted products
Vendor Product Version
google tensorflow 2.8.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "C3684238-B1B8-4134-9FED-8A3733E1F39B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In version 2.8.0, the `TensorKey` hash function used total estimated `AllocatedBytes()`, which (a) is an estimate per tensor, and (b) is a very poor hash function for constants (e.g. `int32_t`). It also tried to access individual tensor bytes through `tensor.data()` of size `AllocatedBytes()`. This led to ASAN failures because the `AllocatedBytes()` is an estimate of total bytes allocated by a tensor, including any pointed-to constructs (e.g. strings), and does not refer to contiguous bytes in the `.data()` buffer. The discoverers could not use this byte vector anyway because types such as `tstring` include pointers, whereas they needed to hash the string values themselves. This issue is patched in Tensorflow versions 2.9.0 and 2.8.1."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En la versi\u00f3n 2.8.0, la funci\u00f3n hash \"TensorKey\" usaba el total estimado de \"AllocatedBytes()\", que (a) es una estimaci\u00f3n por tensor, y (b) es una funci\u00f3n hash muy pobre para constantes (por ejemplo, \"int32_t\"). Tambi\u00e9n intent\u00f3 acceder a bytes individuales del tensor mediante \"tensor.data()\" de tama\u00f1o \"AllocatedBytes()\". Esto conllevaba a fallos de ASAN porque \"AllocatedBytes()\" es una estimaci\u00f3n del total de bytes asignados por un tensor, incluyendo cualquier construcci\u00f3n apuntada (por ejemplo, cadenas), y no es referido a bytes contiguos en el buffer \".data()\". Los detectores no pod\u00edan usar este vector de bytes de todos modos porque tipos como \"tstring\" incluyen punteros, mientras que ellos necesitaban hacer un hash de los valores de las cadenas por s\u00ed mismos. Este problema est\u00e1 parcheado en Tensorflow versiones 2.9.0 y 2.8.1"
    }
  ],
  "id": "CVE-2022-29210",
  "lastModified": "2024-11-21T06:58:43.477",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.583",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/framework/tensor_key.h#L53-L64"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b85a28d395dc91f4d22b5f9e1e9a22e92ccecd6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc2f-7r5r-r2hg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a dereference of a null pointer in `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) does not fully validate the `data_splits` argument. This would result in `ngrams_data`(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) to be a null pointer when the output would be computed to have 0 or negative size. Later writes to the output tensor would then cause a null pointer dereference. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una desreferenciaci\u00f3n de un puntero null en \"tf.raw_ops.StringNGrams\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L67-L74) no comprueba completamente el argumento \"data_splits\".\u0026#xa0;Esto dar\u00eda como resultado que \"ngrams_data\" (https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L106-L110) sea un puntero null cuando se calcular\u00eda la salida tener 0 o tama\u00f1o negativo.\u0026#xa0;Las escrituras posteriores en el tensor de salida causar\u00edan una desreferencia del puntero null.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29541",
  "lastModified": "2024-11-21T06:01:20.530",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.487",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-35wv-m3cr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.2.0
google tensorflow 2.3.0
opensuse leap 15.2



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.2.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "FB9BCD7D-1626-429F-B479-7D2F1E46B9C4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 2.2.1 and 2.3.1, the implementation of `dlpack.to_dlpack` can be made to use uninitialized memory resulting in further memory corruption. This is because the pybind11 glue code assumes that the argument is a tensor. However, there is nothing stopping users from passing in a Python object instead of a tensor. The uninitialized memory address is due to a `reinterpret_cast` Since the `PyObject` is a Python object, not a TensorFlow Tensor, the cast to `EagerTensor` fails. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 2.2.1 y 2.3.1, la implementaci\u00f3n de \"dlpack.to_dlpack\" puede ser realizada para usar la memoria no inicializada, lo que resulta en una mayor corrupci\u00f3n de la memoria.\u0026#xa0;Esto es debido a que el c\u00f3digo adhesivo pybind11 asume que el argumento es un tensor.\u0026#xa0;Sin embargo, no existe nada que impida que los usuarios pasen un objeto Python en lugar de un tensor.\u0026#xa0;La direcci\u00f3n de memoria no inicializada es debido a un \"reinterpret_cast\" Dado que el \"PyObject\" es un objeto de Python, no un Tensor de TensorFlow, la conversi\u00f3n a \"EagerTensor\" presenta un fallo.\u0026#xa0;El problema es parcheado en el commit 22e07fb204386768e5bcbea563641ea11f96ceb8 y es publicado en TensorFlow versiones 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15193",
  "lastModified": "2024-11-21T05:05:03.037",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.5,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.573",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjjg-hgv6-h69v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. During shape inference, TensorFlow can allocate a large vector based on a value from a tensor controlled by the user. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Durante la inferencia de forma, TensorFlow puede asignar un vector grande basado en un valor de un tensor controlado por el usuario. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23580",
  "lastModified": "2024-11-21T06:48:51.510",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.657",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L788-L790"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1361fb7e29449629e1df94d44e0427ebec8c83c7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-627q-g293-49q7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-400"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `RaggedBincount` is given an empty input tensor `splits`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"RaggedBincount\" recibe un tensor de entrada vac\u00edo \"splits\", resulta en un segfault que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 7a4591fd4f065f4fa903593bc39b2f79530a74b8 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35986",
  "lastModified": "2024-11-21T07:12:07.117",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.487",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7a4591fd4f065f4fa903593bc39b2f79530a74b8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wr9v-g9vf-c74v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 19:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L433). Before the `for` loop, `batch_idx` is set to 0. The user controls the `splits` array, making it contain only one element, 0. Thus, the code in the `while` loop would increment `batch_idx` and then try to read `splits(1)`, which is outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Si el argumento \"splits\" de \"RaggedBincount\" no especifica un \"SparseTensor\" v\u00e1lido (https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), entonces un atacante puede desencadenar un desbordamiento del b\u00fafer de la pila.\u0026#xa0;Esto causar\u00e1 una lectura desde fuera de l\u00edmites del b\u00fafer tensorial \"splits\" en una implementaci\u00f3n de la operaci\u00f3n \"RaggedBincount\" (https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op. cc#L430-L433).\u0026#xa0;Antes del bucle \"for\",\"batch_idx\" es ajustado en 0. El usuario controla la matriz \"splits\", haciendo que contenga solo un elemento, 0. Por lo tanto, el c\u00f3digo en el bucle \"while\" incrementar\u00eda \"batch_idx\" y luego intenta leer \"splits(1)\", que est\u00e1 fuera de l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2 y TensorFlow versi\u00f3n 2.3.3, ya que estos tambi\u00e9n est\u00e1n afectados"
    }
  ],
  "id": "CVE-2021-29512",
  "lastModified": "2024-11-21T06:01:16.970",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T19:15:07.753",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4278-2v5v-65r4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.Map*` and `tf.raw_ops.OrderedMap*` operations. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) has a check in place to ensure that `indices` is in ascending order, but does not check that `indices` is not empty. We have patched the issue in GitHub commit 532f5c5a547126c634fefd43bbad1dc6417678ac. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en las operaciones \"tf.raw_ops.Map*\" y \"tf.raw_ops.OrderedMap*\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L222-L248) presenta una comprobaci\u00f3n para asegurar que \"indices\" est\u00e1 en orden ascendente, pero no comprueba que \"indices\" no est\u00e1 vac\u00edo. Hemos parcheado el problema en el commit 532f5c5a547126c634fefd43bbad1dc6417678ac de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37671",
  "lastModified": "2024-11-21T06:15:39.857",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.440",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/532f5c5a547126c634fefd43bbad1dc6417678ac"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qr82-2c78-4m8h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 14:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` can be made to crash a TensorFlow process by an integer overflow whose result is then used in a memory allocation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"SparseCountSparseOutput\" puede hacer que un proceso de TensorFlow se bloquee por un desbordamiento de enteros cuyo resultado es usado en una asignaci\u00f3n de memoria. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21738",
  "lastModified": "2025-05-05T17:17:50.707",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T14:15:08.440",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6f4d3e8139ec724dbbcb40505891c81dd1052c4a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4qx-4fjv-hmw6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `Range` suffers from integer overflows. These can trigger undefined behavior or, in some scenarios, extremely large allocations. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Range` suffers from integer overflows. These can trigger undefined behavior or, in some scenarios, extremely large allocations. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La implementaci\u00f3n de \"Range\" sufre un desbordamientos de enteros. Estos pueden desencadenar un comportamiento indefinido o, en algunos escenarios, asignaciones extremadamente grandes. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23562",
  "lastModified": "2024-11-21T06:48:49.150",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.843",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/52676"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/51733"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f0147751fd5d2ff23251149ebad9af9f03010732"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/52676"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/51733"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qx3f-p745-w4hr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source machine learning platform. Versions prior to 2.12.0 and 2.11.1 have a null pointer error in RandomShuffle with XLA enabled. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source machine learning platform. Versions prior to 2.12.0 and 2.11.1 have a null pointer error in RandomShuffle with XLA enabled. A fix is included in TensorFlow 2.12.0 and 2.11.1."
    }
  ],
  "id": "CVE-2023-25674",
  "lastModified": "2024-11-21T07:49:55.187",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.937",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf97-q72m-7579"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK` failure by passing an empty image to `tf.raw_ops.DrawBoundingBoxes`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) uses `CHECK_*` assertions instead of `OP_REQUIRES` to validate user controlled inputs. Whereas `OP_REQUIRES` allows returning an error condition back to the user, the `CHECK_*` macros result in a crash if the condition is false, similar to `assert`. In this case, `height` is 0 from the `images` input. This results in `max_box_row_clamp` being negative and the assertion being falsified, followed by aborting program execution. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo de \"CHECK\" al pasar una imagen vac\u00eda a \"tf.raw_ops.DrawBoundingBoxes\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ea34a18dc3f5c8d80a40ccca1404f343b5d55f91/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L148-L165) usa \"CHECIRES_ * para\" comprobar las entradas controladas por el usuario.\u0026#xa0;Mientras que \"OP_REQUIRES\" permite devolver una condici\u00f3n de error al usuario, las macros\" CHECK_ * \"dan como resultado un bloqueo si la condici\u00f3n es falsa, similar a\" assert\".\u0026#xa0;En este caso, \"height\" es 0 de la entrada de \"images\".\u0026#xa0;Esto resulta en que \"max_box_row_clamp\" sea negativo y la aserci\u00f3n se falsifique, seguido de la interrupci\u00f3n de una ejecuci\u00f3n del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0"
    }
  ],
  "id": "CVE-2021-29533",
  "lastModified": "2024-11-21T06:01:19.577",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.120",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b432a38fe0e1b4b904a6c222cbce794c39703e87"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-393f-2jr3-cp69"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don't expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code.
References
security-advisories@github.comhttp://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.htmlMailing List, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3fPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.3.1Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.htmlMailing List, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3fPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45Exploit, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "7A5421A9-693F-472A-9A21-43950C884C77",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "B0FEB74E-5E54-4A2F-910C-FA1812C73DB2",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "47D83682-6615-49BC-8043-F36B9D017578",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative `-1` value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the `-1` index is a valid tensor index for any operator, including those that don\u0027t expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that only operators which accept optional inputs use the `-1` special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code."
    },
    {
      "lang": "es",
      "value": "En TensorFlow Lite versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, los modelos guardados en formato flatbuffer usan un esquema de indexaci\u00f3n doble: un modelo tiene un conjunto de subgr\u00e1ficos, cada subgr\u00e1fico tiene un conjunto de operadores y cada operador tiene un conjunto de tensores de entrada/salida. El formato flatbuffer usa \u00edndices para los tensores, indexando en una matriz de tensores que es propiedad del subgr\u00e1fico. Esto resulta en un patr\u00f3n de indexaci\u00f3n de doble matriz cuando intenta obtener los datos de cada tensor. Sin embargo, algunos operadores pueden tener algunos tensores opcionales. Para manejar este escenario, el modelo flatbuffer usa un valor negativo \"-1\" como \u00edndice para estos tensores. Esto resulta en un cubierta especial durante la comprobaci\u00f3n en el momento de la carga del modelo. Desafortunadamente, esto significa que el \u00edndice \"-1\" es un \u00edndice tensorial v\u00e1lido para cualquier operador, incluyendo aquellos que no esperan entradas opcionales e incluso para tensores de salida. Por tanto, esto permite escribir y leer desde fuera de los l\u00edmites de los arreglos asignados de la pila, aunque solo en un desplazamiento espec\u00edfico desde el inicio de estos arreglos. Esto resulta en gadgets de lectura y escritura, aunque con un alcance muy limitado. El problema es parcheado en varias commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21 y fff2c83) y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1. Una soluci\u00f3n alternativa potencial ser\u00eda agregar un \"Verifier\" personalizado al c\u00f3digo de carga del modelo para garantizar que solo los operadores que aceptan entradas opcionales usen el valor especial \"-1\" y solo para los tensores que esperan que sean opcionales. Dado que este enfoque de tipo allow-list es propenso a errores, recomendamos actualizar al c\u00f3digo parcheado"
    }
  ],
  "id": "CVE-2020-15211",
  "lastModified": "2024-11-21T05:05:05.877",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 5.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.5,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.400",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/00302787b788c5ff04cb6f62aed5a74d936e86c0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1970c2158b1ffa416d159d03c3370b9a462aee35"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/46d5b0852528ddfd614ded79bccc75589f801bd9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cd31fd0ce0449a9e0f83dcad08d6ed7f1d6bef3f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e11f55585f614645b360563072ffeb5c3eeff162"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fff2c8326280c07733828f990548979bdc893859"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvpc-8phh-8f45"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of TrySimplify(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) has undefined behavior due to dereferencing a null pointer in corner cases that result in optimizing a node with no inputs. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de TrySimplify (https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc#L390-L401) presenta un comportamiento desreferencia del puntero null que es debido a un comportamiento no definido que resulta en una optimizaci\u00f3n de un nodo sin entradas.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29616",
  "lastModified": "2024-11-21T06:01:30.087",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.173",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6340f0665d53716ef3197ada88936c2a5f7a2d3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvv-7x94-7vq8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVarsPerChannel` is given `min` or `max` tensors of a rank other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVarsPerChannel` is given `min` or `max` tensors of a rank other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"FakeQuantWithMinMaxVarsPerChannel\" le son dados tensores \"min\" o \"max\" de un rango distinto a uno, es producido un fallo de \"CHECK\" que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36019",
  "lastModified": "2024-11-21T07:12:11.813",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.887",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9j4v-pp28-mxv7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de inferencia de formas para las operaciones \"Cudnn*\" en TensorFlow puede ser enga\u00f1ado para acceder a memoria no v\u00e1lida, por medio de un desbordamiento del buffer de la pila. Esto ocurre porque los rangos de los par\u00e1metros \"input\", \"input_h\" y \"input_c\" no son comprobados, sino que el c\u00f3digo asume que presentan ciertos valores. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41221",
  "lastModified": "2024-11-21T06:25:48.817",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.413",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/af5fcebb37c8b5d71c237f4e59c6477015c78ce6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cqv6-3phm-hcwx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In eager mode, TensorFlow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1 does not set the session state. Hence, calling `tf.raw_ops.GetSessionHandle` or `tf.raw_ops.GetSessionHandleV2` results in a null pointer dereference In linked snippet, in eager mode, `ctx->session_state()` returns `nullptr`. Since code immediately dereferences this, we get a segmentation fault. The issue is patched in commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In eager mode, TensorFlow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1 does not set the session state. Hence, calling `tf.raw_ops.GetSessionHandle` or `tf.raw_ops.GetSessionHandleV2` results in a null pointer dereference In linked snippet, in eager mode, `ctx-\u003esession_state()` returns `nullptr`. Since code immediately dereferences this, we get a segmentation fault. The issue is patched in commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En modo eager, TensorFlow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1 no establece el estado de la sesi\u00f3n.\u0026#xa0;Por lo tanto, llamar a \"tf.raw_ops.GetSessionHandle\" o \"tf.raw_ops.GetSessionHandleV2\" resulta en una desreferencia del puntero null. En el fragmento vinculado, en modo eager, \"ctx-) session_state()\" devuelve \"nullptr\".\u0026#xa0;Dado que el c\u00f3digo elimina inmediatamente la referencia a esto, obtenemos un fallo de segmentaci\u00f3n.\u0026#xa0;El problema es parcheado en el commit 9a133d73ae4b4664d22bd1aa6d654fec13c52ee1 y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15204",
  "lastModified": "2024-11-21T05:05:04.787",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.713",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9a133d73ae4b4664d22bd1aa6d654fec13c52ee1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8gv-q7wr-9jf8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de inferencia de forma para \"DeserializeSparse\" puede desencadenar una desreferencia de puntero null. Esto es debido a que la funci\u00f3n de inferencia de forma asume que el tensor \"serialize_sparse\" es un tensor con rango positivo (y que presenta \"3\" como \u00faltima dimensi\u00f3n). La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2 y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41215",
  "lastModified": "2024-11-21T06:25:47.883",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.003",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d3738dd70f1c9ceb547258cbb82d853da8771850"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x3v8-c8qx-3j3r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's `saved_model_cli` tool is vulnerable to a code injection as it calls `eval` on user supplied strings. This can be used by attackers to run arbitrary code on the plaform where the CLI tool runs. However, given that the tool is always run manually, the impact of this is not severe. We have patched this by adding a `safe` flag which defaults to `True` and an explicit warning for users. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection as it calls `eval` on user supplied strings. This can be used by attackers to run arbitrary code on the plaform where the CLI tool runs. However, given that the tool is always run manually, the impact of this is not severe. We have patched this by adding a `safe` flag which defaults to `True` and an explicit warning for users. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la herramienta \"saved_model_cli\" de TensorFlow es vulnerable a una inyecci\u00f3n de c\u00f3digo ya que llama a \"eval\" sobre cadenas suministradas por el usuario. Esto puede ser usado por atacantes para ejecutar c\u00f3digo arbitrario en la plataforma donde es ejecutada la herramienta CLI. Sin embargo, dado que la herramienta siempre es ejecutada manualmente, el impacto de esto no es grave. Hemos corregido esto a\u00f1adiendo una bandera \"safe\" que por defecto es \"True\" y una advertencia expl\u00edcita para usuarios. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n se ven afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41228",
  "lastModified": "2024-11-21T06:25:49.960",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "HIGH",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 0.8,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.663",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3rcw-9p9x-582v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-78"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-94"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FusedBatchNorm` is vulnerable to a heap buffer overflow. If the tensors are empty, the same implementation can trigger undefined behavior by dereferencing null pointers. The implementation(https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) fails to validate that `scale`, `offset`, `mean` and `variance` (the last two only when required) all have the same number of elements as the number of channels of `x`. This results in heap out of bounds reads when the buffers backing these tensors are indexed past their boundary. If the tensors are empty, the validation mentioned in the above paragraph would also trigger and prevent the undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.FusedBatchNorm\" es vulnerable a un desbordamiento del b\u00fafer de la pila.\u0026#xa0;Si los tensores est\u00e1n vac\u00edos, la misma implementaci\u00f3n puede desencadenar un comportamiento indefinido al eliminar la desreferencia de punteros nulls.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/57d86e0db5d1365f19adcce848dfc1bf89fdd4c7/tensorflow/core/kernels/fused_batch_norm_op.cc) no comprueba que \"scale\", \"offset\", \"mean\" y \"varnce\" (los dos \u00faltimos solo cuando sea necesario) todos presentan el mismo n\u00famero de elementos que el n\u00famero de canales de \"x\".\u0026#xa0;Esto resulta en lecturas de pilas fuera de l\u00edmites cuando los b\u00faferes que respaldan estos tensores se indexan m\u00e1s all\u00e1 de su l\u00edmite.\u0026#xa0;Si los tensores est\u00e1n vac\u00edos, Una comprobaci\u00f3n mencionada en el p\u00e1rrafo anterior tambi\u00e9n desencadenar\u00eda y evitar\u00eda el comportamiento indefinido.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29583",
  "lastModified": "2024-11-21T06:01:25.810",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.437",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6972f9dfe325636b3db4e0bc517ee22a159365c0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9xh4-23q4-v6wr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, TFLite [\"expand_dims.cc\"] (https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contiene una vulnerabilidad que permite leer un elemento fuera de l\u00edmites de los datos asignados a la pila.\u0026#xa0;Si \"axis\" es un valor negativo grande (p. Ej., \"-100000\"), despu\u00e9s del primer  \"if\" seguir\u00e1 siendo negativo.\u0026#xa0;La comprobaci\u00f3n que sigue a la instrucci\u00f3n \"if\" pasar\u00e1 y el ciclo \"for\" leer\u00e1 un elemento antes del inicio de \"input_dims.data\" (cuando\" i = 0\").\u0026#xa0;Hemos solucionado el problema en GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4,"
    }
  ],
  "id": "CVE-2021-37685",
  "lastModified": "2024-11-21T06:15:41.953",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.677",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.image.resize` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, si se llama a \"tf.image.resize\" con un argumento de entrada grande, el proceso de TensorFlow ser\u00e1 bloqueado debido a un fallo de \"CHECK\" causado por un desbordamiento. El n\u00famero de elementos en el tensor de salida es demasiado para el tipo \"int64_t\" y el desbordamiento es detectado por medio de una sentencia \"CHECK\". Esto aborta el proceso. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41199",
  "lastModified": "2024-11-21T06:25:45.193",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:07.970",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46914"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e5272d4204ff5b46136a1ef1204fc00597e21837"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46914"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hx2-qx8j-qjqm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Sending invalid argument for `row_partition_types` of `tf.raw_ops.RaggedTensorToTensor` API results in a null pointer dereference and undefined behavior. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accesses the first element of a user supplied list of values without validating that the provided list is not empty. We have patched the issue in GitHub commit 301ae88b331d37a2a16159b65b255f4f9eb39314. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. El env\u00edo de un argumento no v\u00e1lido para \"row_partition_types\" de la API \"tf.raw_ops.RaggedTensorToTensor\" resulta en una desreferencia de puntero null y un comportamiento indefinido. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L328) accede al primer elemento de una lista de valores proporcionada por el usuario sin comprender que la lista proporcionada no est\u00e1 vac\u00eda. Hemos parcheado el problema en el commit 301ae88b331d37a2a16159b65b255f4f9eb39314 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37638",
  "lastModified": "2024-11-21T06:15:34.840",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:08.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/301ae88b331d37a2a16159b65b255f4f9eb39314"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hwr7-8gxx-fj5p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context->status()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference by providing an invalid `permutation` to `tf.raw_ops.SparseMatrixSparseCholesky`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) fails to properly validate the input arguments. Although `ValidateInputs` is called and there are checks in the body of this function, the code proceeds to the next line in `ValidateInputs` since `OP_REQUIRES`(https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/framework/op_requires.h#L41-L48) is a macro that only exits the current function. Thus, the first validation condition that fails in `ValidateInputs` will cause an early return from that function. However, the caller will continue execution from the next line. The fix is to either explicitly check `context-\u003estatus()` or to convert `ValidateInputs` to return a `Status`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una desreferencia de puntero null proporcionando una \"permutation\" no v\u00e1lida a \"tf.raw_ops.SparseMatrixSparseCholesky\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow/core/kernels/sparse/sparse_cholesky_op.cc#L85-L86) no comprueba apropiadamente los argumentos de entrada.\u0026#xa0;Aunque se llama a \"ValidateInputs\" y se presentan comprobaciones en el cuerpo de esta funci\u00f3n, el c\u00f3digo pasa a la siguiente l\u00ednea en \"ValidateInputs\" desde \"OP_REQUIRES\" (https://github.com/tensorflow/tensorflow/blob/080f1d9e257589f78b3ffb75debf584168aa6062/tensorflow /core/framework/op_requires.h#L41-L48) es una macro que solo sale de la funci\u00f3n actual.\u0026#xa0;Por lo tanto,\u0026#xa0;la primera condici\u00f3n de comprobaci\u00f3n que fallo en \"ValidateInputs\" causar\u00e1 un retorno anticipado de esa funci\u00f3n.\u0026#xa0;Sin embargo, la persona que llama continuar\u00e1 una ejecuci\u00f3n desde la siguiente l\u00ednea.\u0026#xa0;La correcci\u00f3n es comprobar expl\u00edcitamente \"context-) status()\" o convertir \"ValidateInputs\" para devolver un\" Status\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29530",
  "lastModified": "2024-11-21T06:01:19.203",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.983",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xcwj-wfcm-m23c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 11:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalAvgPoolGrad` does not consider cases where the input tensors are invalid allowing an attacker to read from outside of bounds of heap. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"FractionalAvgPoolGrad\" no considera los casos en los que los tensores de entrada no son v\u00e1lidos, permitiendo a un atacante leer desde fuera de los l\u00edmites de la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21730",
  "lastModified": "2025-05-05T17:17:49.230",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T11:15:08.090",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/fractional_avg_pool_op.cc#L209-L360"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/002408c3696b173863228223d535f9de72a101a9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vjg4-v33c-ggc4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the `QuantizeAndDequantizeV*` operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the `QuantizeAndDequantizeV*` operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, las funciones de inferencia de forma para las operaciones \"QuantizeAndDequantizeV*\" pueden desencadenar una lectura fuera de l\u00edmites de la matriz asignada a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2 y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41205",
  "lastModified": "2024-11-21T06:25:46.197",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.750",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rx-x2rw-pc6f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of division in TFLite is [vulnerable to a division by 0 error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc). There is no check that the divisor tensor does not contain zero elements. We have patched the issue in GitHub commit 1e206baedf8bef0334cca3eb92bab134ef525a28. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, la implementaci\u00f3n de la divisi\u00f3n en TFLite es [vulnerable a una divisi\u00f3n por 0] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/div.cc).\u0026#xa0;no es comprobada que el tensor del divisor no contenga elementos cero.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub 1e206baedf8bef0334cca3eb92bab134ef525a28.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37683",
  "lastModified": "2024-11-21T06:15:41.673",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.487",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1e206baedf8bef0334cca3eb92bab134ef525a28"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rhrq-64mq-hf9h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. An input `encoded` that is not a valid `CompositeTensorVariant` tensor will trigger a segfault in `tf.raw_ops.CompositeTensorVariantToComponents`. We have patched the issue in GitHub commits bf594d08d377dc6a3354d9fdb494b32d45f91971 and 660ce5a89eb6766834bdc303d2ab3902aef99d3d. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. An input `encoded` that is not a valid `CompositeTensorVariant` tensor will trigger a segfault in `tf.raw_ops.CompositeTensorVariantToComponents`. We have patched the issue in GitHub commits bf594d08d377dc6a3354d9fdb494b32d45f91971 and 660ce5a89eb6766834bdc303d2ab3902aef99d3d. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Una entrada \"encoded\" que no es un tensor v\u00e1lido \"CompositeTensorVariant\" activar\u00e1 un error de segmentaci\u00f3n en \"tf.raw_ops.CompositeTensorVariantToComponents\". Hemos solucionado el problema en los commits de GitHub bf594d08d377dc6a3354d9fdb494b32d45f91971 y 660ce5a89eb6766834bdc303d2ab3902aef99d3d. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41909",
  "lastModified": "2024-11-21T07:24:02.807",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:22.223",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/660ce5a89eb6766834bdc303d2ab3902aef99d3d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf594d08d377dc6a3354d9fdb494b32d45f91971"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjx6-v474-2ch9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/660ce5a89eb6766834bdc303d2ab3902aef99d3d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf594d08d377dc6a3354d9fdb494b32d45f91971"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rjx6-v474-2ch9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de inferencia de forma para \"tf.ragged.cross\" puede desencadenar una lectura fuera de l\u00edmites de la matriz asignada a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41212",
  "lastModified": "2024-11-21T06:25:47.387",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.877",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fr77-rrx3-cp7g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.FusedResizeAndPadConv2D` is given a large tensor shape, it overflows. We have patched the issue in GitHub commit d66e1d568275e6a2947de97dca7a102a211e01ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "7EBE1EC2-A67A-4885-B1BB-A2BB5D18459D",
              "versionEndExcluding": "2.7.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "B5F5D78E-DBBA-4CC7-ADB1-454F86700280",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "EF6375A0-9871-4072-95F0-4266620F4713",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "534F3684-3E31-4A0A-9821-70EEFA8AB258",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "E1D5EAED-B494-4E30-AB79-99BD1876B5FA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.FusedResizeAndPadConv2D` is given a large tensor shape, it overflows. We have patched the issue in GitHub commit d66e1d568275e6a2947de97dca7a102a211e01ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando a `tf.raw_ops.FusedResizeAndPadConv2D` se le da una forma de tensor grande, se desborda. Hemos solucionado el problema en GitHub en el commit  d66e1d568275e6a2947de97dca7a102a211e01ce. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n aplicaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41885",
  "lastModified": "2024-11-21T07:23:59.477",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:14.147",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops_fused_image_transform.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d66e1d568275e6a2947de97dca7a102a211e01ce"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-762h-vpvw-3rcx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/conv_ops_fused_image_transform.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d66e1d568275e6a2947de97dca7a102a211e01ce"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-762h-vpvw-3rcx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar<T>()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from `tf.raw_ops.LoadAndRemapMatrix`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) assumes that the `ckpt_path` is always a valid scalar. However, an attacker can send any other tensor as the first argument of `LoadAndRemapMatrix`. This would cause the rank `CHECK` in `scalar\u003cT\u003e()()` to trigger and terminate the process. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio al explotar una fallo \"CHECK\" proveniente de \"tf.raw_ops.LoadAndRemapMatrix\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) asume que la ruta \"ckpt_ scalar es siempre v\u00e1lida\".\u0026#xa0;Sin embargo, un atacante puede enviar cualquier otro tensor como primer argumento de \"LoadAndRemapMatrix\".\u0026#xa0;Esto podr\u00eda causar que el rango \"CHECK\" en \"scalar (T)()()\" desencadene y finalice el proceso.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29561",
  "lastModified": "2024-11-21T06:01:23.140",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.420",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/77dd114513d7796e1e2b8aece214a380af26fbf4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gvm4-h8j3-rjrq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation->upper[i]` might be smaller than `interpolation->lower[i]`. This is an issue if `interpolation->upper[i]` is capped at `in_size-1` as it means that `interpolation->lower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in `tf.raw_ops.QuantizedResizeBilinear` by manipulating input values so that float rounding results in off-by-one error in accessing image elements. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) computes two integers (representing the upper and lower bounds for interpolation) by ceiling and flooring a floating point value. For some values of `in`, `interpolation-\u003eupper[i]` might be smaller than `interpolation-\u003elower[i]`. This is an issue if `interpolation-\u003eupper[i]` is capped at `in_size-1` as it means that `interpolation-\u003elower[i]` points outside of the image. Then, in the interpolation code(https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), this would result in heap buffer overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar un desbordamiento del b\u00fafer de la pila en \"tf.raw_ops.QuantizedResizeBilinear\" al manipular los valores de entrada para que el redondeo flotante resulta en un error de uno en uno al acceder a los elementos de la imagen.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L62-L66) calcula dos n\u00fameros enteros (que representan los l\u00edmites superior e inferior) por techo y piso un valor de punto flotante.\u0026#xa0;Para algunos valores de \"in\",\" interpolation-)upper[i]\" podr\u00eda ser menor que \"interpolation-)lower [i] \".\u0026#xa0;Esto es un problema si \"interpolation-)upper[i]\" est\u00e1 limitado a \"in_size-1\" ya que significa que \"interpolation-)lower[i]\" apunta fuera de la imagen.\u0026#xa0;Luego,\u0026#xa0;en el c\u00f3digo de interpolaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/44b7f486c0143f68b56c34e2d01e146ee445134a/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L245-L264), esto resultar\u00eda en un desbordamiento del b\u00fafer de la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29529",
  "lastModified": "2024-11-21T06:01:19.080",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.937",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f851613f8f0fb0c838d160ced13c134f778e3ce7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jfp7-4j67-8r3q"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-193"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the implementation of `SparseFillEmptyRowsGrad` uses a double indexing pattern. It is possible for `reverse_index_map(i)` to be an index outside of bounds of `grad_values`, thus resulting in a heap buffer overflow. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, la implementaci\u00f3n de \"SparseFillEmptyRowsGrad\" usa un patr\u00f3n de indexaci\u00f3n doble.\u0026#xa0;Es posible que \"reverse_index_map (i)\" sea un \u00edndice fuera de los l\u00edmites de \"grad_values\", lo que resulta en un desbordamiento del b\u00fafer de la pila.\u0026#xa0;El problema es parcheado en el commit 390611e0d45c5793c7066110af37c8514e6a6c54 y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15195",
  "lastModified": "2024-11-21T05:05:03.340",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.743",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-63xm-rx5p-xvqr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2024-11-21 06:45
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `ThreadPoolHandle` can be used to trigger a denial of service attack by allocating too much memory. This is because the `num_threads` argument is only checked to not be negative, but there is no upper bound on its value. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"ThreadPoolHandle\" puede ser usada para desencadenar un ataque de denegaci\u00f3n de servicio asignando demasiada memoria. Esto es debido a que el argumento \"num_threads\" s\u00f3lo es comprobado que no sea negativo, pero no se presenta un l\u00edmite superior en su valor. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21732",
  "lastModified": "2024-11-21T06:45:19.790",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:07.933",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/experimental/threadpool_dataset_op.cc#L79-L135"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e3749a6d5d1e8d11806d4a2e9cc3123d1a90b75e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c582-c96p-r5cq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-770"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit aed36912609fc07229b4d0a7b44f3f48efc00fd0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it gives a null dereference. We have patched the issue in GitHub commit aed36912609fc07229b4d0a7b44f3f48efc00fd0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"mlir::tfg::ConvertGenericFunctionToFunctionDef\" recibe atributos de funci\u00f3n vac\u00edos, da una derivaci\u00f3n nula. Hemos parcheado el problema en el commit de GitHub aed36912609fc07229b4d0a7b44f3f48efc00fd0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36000",
  "lastModified": "2024-11-21T07:12:09.177",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.647",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aed36912609fc07229b4d0a7b44f3f48efc00fd0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqxc-pvf8-2w9v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SpaceToBatchNd` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.cc#L82-L83). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador TFLite \"SpaceToBatchNd\" es [vulnerable a un error de divisi\u00f3n por cero] (https://github.com/tensorflow/tensorflow/blob/412c7d9bb8f8a762c5b266c9e73bfa165f29aac8/tensorflow/lite/kernels/space_to_batch_nd.83) .\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que una dimensi\u00f3n de la entrada del \"block\" sea 0. Por lo tanto, el valor correspondiente en \"block_shape\" es 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29597",
  "lastModified": "2024-11-21T06:01:27.593",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d36ba65577006affb272335b7c1abd829010708"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v52p-hfjf-wg88"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:50
Summary
TensorFlow is an open source machine learning platform. Prior to versions 2.12.0 and 2.11.1, `nn_ops.fractional_avg_pool_v2` and `nn_ops.fractional_max_pool_v2` require the first and fourth elements of their parameter `pooling_ratio` to be equal to 1.0, as pooling on batch and channel dimensions is not supported. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source machine learning platform. Prior to versions 2.12.0 and 2.11.1, `nn_ops.fractional_avg_pool_v2` and `nn_ops.fractional_max_pool_v2` require the first and fourth elements of their parameter `pooling_ratio` to be equal to 1.0, as pooling on batch and channel dimensions is not supported. A fix is included in TensorFlow 2.12.0 and 2.11.1."
    }
  ],
  "id": "CVE-2023-25801",
  "lastModified": "2024-11-21T07:50:13.740",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 8.0,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:08.120",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee50d1e00f81f62a4517453f721c634bbb478307"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f49c-87jh-g47q"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-415"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions all TFLite operations that use quantization can be made to use unitialized values. [For example](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200). The issue stems from the fact that `quantization.params` is only valid if `quantization.type` is different that `kTfLiteNoQuantization`. However, these checks are missing in large parts of the code. We have patched the issue in GitHub commits 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 and 8933b8a21280696ab119b63263babdb54c298538. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, todas las operaciones de TFLite que utilizan la cuantificaci\u00f3n se pueden hacer para utilizar valores unitarios.\u0026#xa0;[Por ejemplo] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/depthwise_conv.cc#L198-L200).\u0026#xa0;El problema surge del hecho que \"quantization.params\" solo es v\u00e1lido si \"quantization.type\" es diferente de \"kTfLiteNoQuantization\".\u0026#xa0;Sin embargo, estas comprobaciones faltan en gran parte del c\u00f3digo.\u0026#xa0;Hemos solucionado el problema en las commits de GitHub 537bc7c723439b9194a358f64d871dd326c18887, 4a91f2069f7145aab6ba2d8cfe41be8a110c18a5 y 8933b8a21280696ab119b63263babdb54c298538.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4,"
    }
  ],
  "id": "CVE-2021-37682",
  "lastModified": "2024-11-21T06:15:41.520",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.390",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4a91f2069f7145aab6ba2d8cfe41be8a110c18a5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/537bc7c723439b9194a358f64d871dd326c18887"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8933b8a21280696ab119b63263babdb54c298538"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4c4g-crqm-xrxw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.TensorSummaryV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5vExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5vExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.TensorSummaryV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.TensorSummaryV2\" no comprobaba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29193",
  "lastModified": "2024-11-21T06:58:40.950",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.553",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/summary_tensor_op.cc#L33-L58"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/290bb05c80c327ed74fae1d089f1001b1e2a4ef7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p9q-h29j-3f5v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.SparseFillEmptyRows`. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) does not validate that the input arguments are not empty tensors. We have patched the issue in GitHub commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.SparseFillEmptyRows`. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) does not validate that the input arguments are not empty tensors. We have patched the issue in GitHub commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en \"tf.raw_ops.SparseFillEmptyRows\". La [implementaci\u00f3n] de shape (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/sparse_ops.cc#L608-L634) no comprueba que los argumentos de entrada no sean tensores vac\u00edos. Hemos parcheado el problema en el commit 578e634b4f1c1c684d4b4294f9e5281b2133b3ed de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37676",
  "lastModified": "2024-11-21T06:15:40.577",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.657",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/578e634b4f1c1c684d4b4294f9e5281b2133b3ed"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v768-w7m9-2vmm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing invalid arguments (e.g., discovered via fuzzing) to `tf.raw_ops.SparseCountSparseOutput` results in segfault. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Pasar argumentos no comprobados (p. Ej., Descubiertos por medio de fuzzing) a \"tf.raw_ops.SparseCountSparseOutput\" resulta en fallo de segmentaci\u00f3n.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29619",
  "lastModified": "2024-11-21T06:01:30.480",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.357",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/82e6203221865de4008445b13c69b6826d2b28d9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wvjw-p9f5-vq28"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-755"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A `GraphDef` from a TensorFlow `SavedModel` can be maliciously altered to cause a TensorFlow process to crash due to encountering a `StatusOr` value that is an error and forcibly extracting the value from it. We have patched the issue in multiple GitHub commits and these will be included in TensorFlow 2.8.0 and TensorFlow 2.7.1, as both are affected.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "7F6C778E-1E1A-4DBD-894E-68163A5157EE",
              "versionEndExcluding": "2.7.1",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A `GraphDef` from a TensorFlow `SavedModel` can be maliciously altered to cause a TensorFlow process to crash due to encountering a `StatusOr` value that is an error and forcibly extracting the value from it. We have patched the issue in multiple GitHub commits and these will be included in TensorFlow 2.8.0 and TensorFlow 2.7.1, as both are affected."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un \"GraphDef\" de un \"SavedModel\" de TensorFlow puede ser alterado de forma maliciosa para causar que un proceso de TensorFlow sea bloqueado debido a que encuentra un valor \"StatusOr\" que es un error y extrae a la fuerza el valor del mismo. Hemos parcheado el problema en m\u00faltiples commits de GitHub y estos ser\u00e1 incluidos en TensorFlow versi\u00f3n 2.8.0 y TensorFlow versi\u00f3n 2.7.1, ya que ambos est\u00e1n afectados"
    }
  ],
  "id": "CVE-2022-23590",
  "lastModified": "2024-11-21T06:48:52.863",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.200",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L560-L567"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/955059813cc325dc1db5e2daa6221271406d4439"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqrv-8r2f-7278"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The optimized implementation of the `TransposeConv` TFLite operator is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L5221-L5222). An attacker can craft a model such that `stride_{h,w}` values are 0. Code calling this function must validate these arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n optimizada del operador TFLite \"TransposeConv\" es [vulnerable a un error de divisi\u00f3n por cero] (https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/optimized/optimized#L5221-L5222).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que los valores de \"stride_ {h, w}\" sean 0. El c\u00f3digo que llama a esta funci\u00f3n debe comprobar estos argumentos.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29588",
  "lastModified": "2024-11-21T06:01:26.440",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.723",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/801c1c6be5324219689c98e1bd3e0ca365ee834d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vfr4-x8j2-3rf9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow's boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for boosted trees in TensorFlow is still missing validation. As a result, attackers can trigger denial of service (via dereferencing `nullptr`s or via `CHECK`-failures) as well as abuse undefined behavior (binding references to `nullptr`s). An attacker can also read and write from heap buffers, depending on the API that gets used and the arguments that are passed to the call. Given that the boosted trees implementation in TensorFlow is unmaintained, it is recommend to no longer use these APIs. We will deprecate TensorFlow\u0027s boosted trees APIs in subsequent releases. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de los \u00e1rboles potenciados en TensorFlow sigue sin ser comprendido por la comprobaci\u00f3n. Como resultado, los atacantes pueden desencadenar una denegaci\u00f3n de servicio (por medio de la desreferenciaci\u00f3n de \"nullptr\"s o a trav\u00e9s de fallos de \"CHECK\") as\u00ed como abusar de un comportamiento indefinido (vinculando referencias a \"nullptr\"s). Un atacante tambi\u00e9n puede leer y escribir desde los buffers de la pila, dependiendo de la API que es usada y los argumentos que son pasados a la llamada. Dado que la implementaci\u00f3n de boosted trees en TensorFlow no es mantenida, es recomendado no seguir usando estas APIs. Dejaremos de usar las APIs de \u00e1rboles potenciados de TensorFlow en versiones posteriores. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41208",
  "lastModified": "2024-11-21T06:25:46.700",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.0,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.533",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5c8c9a8bfe750f9743d0c859bae112060b216f5c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-57wx-m983-2f88"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        },
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `EmptyTensorList` receives an input `element_shape` with more than one dimension, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c8ba76d48567aed347508e0552a257641931024d. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `EmptyTensorList` receives an input `element_shape` with more than one dimension, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c8ba76d48567aed347508e0552a257641931024d. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"EmptyTensorList\" recibe una entrada \"element_shape\" con m\u00e1s de una dimensi\u00f3n, da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit de GitHub c8ba76d48567aed347508e0552a257641931024d. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35998",
  "lastModified": "2024-11-21T07:12:08.877",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.527",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c8ba76d48567aed347508e0552a257641931024d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhw4-wwr7-gjc5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. When the `BaseCandidateSamplerOp` function receives a value in `true_classes` larger than `range_max`, a heap oob read occurs. We have patched the issue in GitHub commit b389f5c944cadfdfe599b3f1e4026e036f30d2d4. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When the `BaseCandidateSamplerOp` function receives a value in `true_classes` larger than `range_max`, a heap oob read occurs. We have patched the issue in GitHub commit b389f5c944cadfdfe599b3f1e4026e036f30d2d4. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando la funci\u00f3n `BaseCandidateSamplerOp` recibe un valor en `true_classes` mayor que `range_max`, se produce una lectura fuera de los l\u00edmites del heap. Hemos solucionado el problema en el commit de GitHub b389f5c944cadfdfe599b3f1e4026e036f30d2d4. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41880",
  "lastModified": "2024-11-21T07:23:58.673",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.1,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:10.007",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/candidate_sampler_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b389f5c944cadfdfe599b3f1e4026e036f30d2d4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8w5g-3wcv-9g2j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/candidate_sampler_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b389f5c944cadfdfe599b3f1e4026e036f30d2d4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8w5g-3wcv-9g2j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n de \"ParallelConcat\" falla en la comprobaci\u00f3n de la entrada y puede producir una divisi\u00f3n por 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a incluir este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango admitido"
    }
  ],
  "id": "CVE-2021-41207",
  "lastModified": "2024-11-21T06:25:46.530",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.470",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7v94-64hj-m82h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it crashes. We have patched the issue in GitHub commit ad069af92392efee1418c48ff561fd3070a03d7b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::ConvertGenericFunctionToFunctionDef` is given empty function attributes, it crashes. We have patched the issue in GitHub commit ad069af92392efee1418c48ff561fd3070a03d7b. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"mlir::tfg::ConvertGenericFunctionToFunctionDef\" recibe atributos de funci\u00f3n vac\u00edos, se bloquea. Hemos parcheado el problema en el commit ad069af92392efee1418c48ff561fd3070a03d7b de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36012",
  "lastModified": "2024-11-21T07:12:10.863",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.070",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ad069af92392efee1418c48ff561fd3070a03d7b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jvhc-5hhr-w3v5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.histogram_fixed_width` is vulnerable to a crash when the values array contain `Not a Number` (`NaN`) elements. The implementation assumes that all floating point operations are defined and then converts a floating point result to an integer index. If `values` contains `NaN` then the result of the division is still `NaN` and the cast to `int32` would result in a crash. This only occurs on the CPU implementation. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.ccThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/45770Exploit, Issue Tracking, Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3wExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.ccThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/45770Exploit, Issue Tracking, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3wExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.histogram_fixed_width` is vulnerable to a crash when the values array contain `Not a Number` (`NaN`) elements. The implementation assumes that all floating point operations are defined and then converts a floating point result to an integer index. If `values` contains `NaN` then the result of the division is still `NaN` and the cast to `int32` would result in a crash. This only occurs on the CPU implementation. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.histogram_fixed_width\" es vulnerable a un fallo cuando el array de valores contiene elementos \"Not a Number\" (\"NaN\"). La implementaci\u00f3n asume que todas las operaciones de punto flotante est\u00e1n definidas y entonces convierte un resultado de punto flotante a un \u00edndice entero. Si \"values\" contiene \"NaN\" entonces el resultado de la divisi\u00f3n sigue siendo \"NaN\" y la conversi\u00f3n a \"int32\" resultar\u00eda en un bloqueo. Esto s\u00f3lo ocurre en la implementaci\u00f3n de la CPU. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29211",
  "lastModified": "2024-11-21T06:58:43.623",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.650",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/45770"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/histogram_op.cc#L35-L74"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e57fd691c7b0fd00ea3bfe43444f30c1969748b5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/45770"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrp2-fhq4-4q3w"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede activar una divisi\u00f3n por 0 en \"tf.raw_ops.Conv2DBackpropInput\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/b40060c9f697b044e3107917c797ba052f4506ab/tensorflow/core/kernels/conv_grad_input_ops.h#L625-L655) hace una divisi\u00f3n por una cantidad que es controlada por la persona que llama.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29525",
  "lastModified": "2024-11-21T06:01:18.550",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.760",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2be2cdf3a123e231b16f766aa0e27d56b4606535"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xm2v-8rrw-w9pm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `ScatterNd` function takes an input argument that determines the indices of of the output tensor. An input index greater than the output tensor or less than zero will either write content at the wrong index or trigger a crash. We have patched the issue in GitHub commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"ScatterNd\" toma un argumento de entrada que determina los \u00edndices del tensor de salida. Un \u00edndice de entrada mayor que el tensor de salida o menor que cero escribir\u00e1 el contenido en el \u00edndice equivocado o desencadenar\u00e1 un bloqueo. Hemos parcheado el problema en el commit b4d4b4cb019bd7240a52daa4ba61e3cc814f0384 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35939",
  "lastModified": "2024-11-21T07:12:00.530",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.0,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.243",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/266558ac4c1f361e9a178ee9d3f0ce2e648ae499/tensorflow/lite/kernels/internal/reference/reference_ops.h#L659-L698"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b4d4b4cb019bd7240a52daa4ba61e3cc814f0384"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ffjm-4qwc-7cmf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `UnbatchGradOp` function takes an argument `id` that is assumed to be a scalar. A nonscalar `id` can trigger a `CHECK` failure and crash the program. It also requires its argument `batch_index` to contain three times the number of elements as indicated in its `batch_index.dim_size(0)`. An incorrect `batch_index` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `UnbatchGradOp` function takes an argument `id` that is assumed to be a scalar. A nonscalar `id` can trigger a `CHECK` failure and crash the program. It also requires its argument `batch_index` to contain three times the number of elements as indicated in its `batch_index.dim_size(0)`. An incorrect `batch_index` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"UnbatchGradOp\" toma un argumento \"id\" que se supone que es un escalar. Un \"id\" no escalar puede desencadenar un fallo de \"CHECK\" y bloquear el programa. Tambi\u00e9n requiere que su argumento \"batch_index\" contenga tres veces el n\u00famero de elementos indicado en su \"batch_index.dim_size(0)\". Un \"batch_index\" incorrecto puede desencadenar un fallo de \"CHECK\" y bloquear el programa. Hemos parcheado el problema en el commit 5f945fc6409a3c1e90d6970c9292f805f6e6ddf2 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35952",
  "lastModified": "2024-11-21T07:12:02.477",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.443",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/769eddaf479c8debead9a59a72617d6ed6f0fe10/tensorflow/core/kernels/batch_kernels.cc#L891"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5f945fc6409a3c1e90d6970c9292f805f6e6ddf2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5vq-gw2c-pq47"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.AddManySparseToTensorsMap`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) takes the values specified in `sparse_shape` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de \"CHECK\" en \"tf.raw_ops.AddManySparseToTensorsMap\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/kernels/sparse_tensors_map_ops.cc#L257) toma los valores especificados en \"sparse_shape shape\" como dimensiones para la forma de salida.\u0026#xa0;El constructor \"TensorShape\" (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) usa una operaci\u00f3n\" CHECK\" que es desencadenada (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) : //github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) devuelve un estado no correcto.\u0026#xa0;Esta es una implementaci\u00f3n heredada del constructor y las operaciones deben usar \"BuildTensorShapeBase\" o\" AddDimWithStatus\" para impedir fallos \"CHECK\" en presencia de desbordamientos.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29523",
  "lastModified": "2024-11-21T06:01:18.310",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.663",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2cpx-427x-q2c6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow by passing crafted inputs to `tf.raw_ops.StringNGrams`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) fails to consider corner cases where input would be split in such a way that the generated tokens should only contain padding elements. If input is such that `num_tokens` is 0, then, for `data_start_index=0` (when left padding is present), the marked line would result in reading `data[-1]`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer al pasar entradas dise\u00f1adas a \"tf.raw_ops.StringNGrams\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/1cdd4da14282210cc759e468d9781741ac7d01bf/tensorflow/core/kernels/string_ngrams_op.cc#L171-L185) no considera los casos de esquina donde la entrada se dividir\u00eda de tal manera que los tokens generados solo deben contener elementos de relleno.\u0026#xa0;Si la entrada es tal que \"num_tokens\" es 0, entonces, para \"data_start_index=0\" (cuando el relleno a la izquierda est\u00e1 presente), la l\u00ednea marcada dar\u00eda como resultado la lectura de \"data [-1]\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29542",
  "lastModified": "2024-11-21T06:01:20.657",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.537",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba424dd8f16f7110eea526a8086f1a155f14f22b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hrh-9vmp-2jgg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `CollectiveGather` receives an scalar input `input`, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c1f491817dec39a26be3c574e86a88c30f3c4770. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `CollectiveGather` receives an scalar input `input`, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c1f491817dec39a26be3c574e86a88c30f3c4770. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"CollectiveGather\" recibe una entrada escalar \"input\", da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit c1f491817dec39a26be3c574e86a88c30f3c4770 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35994",
  "lastModified": "2024-11-21T07:12:08.310",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.290",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c1f491817dec39a26be3c574e86a88c30f3c4770"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fhfc-2q7x-929f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes an invalid argument to `dlpack.to_dlpack` the expected validations will cause variables to bind to `nullptr` while setting a `status` variable to the error condition. However, this `status` argument is not properly checked. Hence, code following these methods will bind references to null pointers. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.2.0
google tensorflow 2.3.0
opensuse leap 15.2



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.2.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "FB9BCD7D-1626-429F-B479-7D2F1E46B9C4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes an invalid argument to `dlpack.to_dlpack` the expected validations will cause variables to bind to `nullptr` while setting a `status` variable to the error condition. However, this `status` argument is not properly checked. Hence, code following these methods will bind references to null pointers. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 2.2.1 y 2.3.1, si un usuario pasa un argumento no v\u00e1lido hacia \"dlpack.to_dlpack\", las comprobaciones previstas har\u00e1n que las variables se unan a \"nullptr\" mientras se establece una variable \"status\" para la condici\u00f3n de error.\u0026#xa0;Sin embargo, este argumento \"status\" no se comprueba correctamente.\u0026#xa0;Por lo tanto, el c\u00f3digo que sigue estos m\u00e9todos vincular\u00e1 referencias a punteros null.\u0026#xa0;Este es un comportamiento indefinido y se reporta como un error si se compila con \"-fsanitize=null\".\u0026#xa0;El problema es parcheado en el commit 22e07fb204386768e5bcbea563641ea11f96ceb8 y es publicado en TensorFlow versiones 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15191",
  "lastModified": "2024-11-21T05:05:02.723",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.417",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q8qj-fc9q-cphr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-252"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., &decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(&decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding PNG images TensorFlow can produce a memory leak if the image is invalid. After calling `png::CommonInitDecode(..., \u0026decode)`, the `decode` value contains allocated buffers which can only be freed by calling `png::CommonFreeDecode(\u0026decode)`. However, several error case in the function implementation invoke the `OP_REQUIRES` macro which immediately terminates the execution of the function, without allowing for the memory free to occur. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Cuando son decodificadas im\u00e1genes PNG TensorFlow puede producir una p\u00e9rdida de memoria si la imagen no es v\u00e1lida. Despu\u00e9s de llamar a \"png::CommonInitDecode(..., \u0026amp;decode)\", el valor de \"decode\" contiene buffers asignados que s\u00f3lo pueden ser liberados llamando a \"png::CommonFreeDecode(\u0026amp;decode)\". Sin embargo, varios casos de error en la implementaci\u00f3n de la funci\u00f3n invocan la macro \"OP_REQUIRES\" que termina inmediatamente la ejecuci\u00f3n de la funci\u00f3n, sin permitir que se libere la memoria. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23585",
  "lastModified": "2024-11-21T06:48:52.190",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.923",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L322-L416"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ab51e5b813573dc9f51efa335aebcf2994125ee9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq6p-6334-8gr4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-401"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "B502BA8D-A4D6-46F0-8DB5-D9B4B6EA1B62",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.UnsortedSegmentJoin\" no comprobaba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo asume que \"num_segments\" es un escalar pero no es comprobado antes de acceder a su valor. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29197",
  "lastModified": "2024-11-21T06:58:41.507",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.747",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L92-L95"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/13d38a07ce9143e044aa737cfd7bb759d0e9b400"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hrg5-737c-2p56"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat<T>()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger undefined behavior by binding to null pointer in `tf.raw_ops.ParameterizedTruncatedNormal`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) does not validate input arguments before accessing the first element of `shape`. If `shape` argument is empty, then `shape_tensor.flat\u003cT\u003e()` is an empty array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar un comportamiento indefinido al vincularse a un puntero null en \"tf.raw_ops.ParameterizedTruncatedNormal\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/3f6fe4dfef6f57e768260b48166c27d148f3015f/tensorflow/core/kernels/parameterized_truncated_normal_op.cc#L630) no comprueba los argumentos de entrada versiones anteriores a acceder al primer elemento de \"shape\".\u0026#xa0;Si el argumento \"shape\" est\u00e1 vac\u00edo, entonces\" shape_tensor.flat (T) () \"es una matriz vac\u00eda.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29568",
  "lastModified": "2024-11-21T06:01:23.997",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.743",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5e52ef5a461570cfb68f3bdbbebfe972cb4e0fd8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4p4p-www8-8fv9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 18:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.ResourceScatterDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit 4aacb30888638da75023e6601149415b39763d76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.ResourceScatterDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit 4aacb30888638da75023e6601149415b39763d76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas la implementaci\u00f3n de \"tf.raw_ops.ResourceScatterDiv\" es vulnerable a un error de divisi\u00f3n por 0. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/resource_variable_ops.cc#L865) usa una clase com\u00fan para todas las operaciones binarias, pero no trata el caso de la divisi\u00f3n por 0 por separado. Hemos parcheado el problema en el commit 4aacb30888638da75023e6601149415b39763d76 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37642",
  "lastModified": "2024-11-21T06:15:35.430",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T18:15:10.633",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4aacb30888638da75023e6601149415b39763d76"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ch4f-829c-v5pw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-24 17:29
Modified
2024-11-21 04:52
Summary
NULL pointer dereference in Google TensorFlow before 1.12.2 could cause a denial of service via an invalid GIF file.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "900E7FDD-05E0-42A9-A1BA-1B6ACD57BE0E",
              "versionEndExcluding": "1.12.2",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "NULL pointer dereference in Google TensorFlow before 1.12.2 could cause a denial of service via an invalid GIF file."
    },
    {
      "lang": "es",
      "value": "Desreferencia de puntero NULL en Google TensorFlow versiones anteriores a 1.12.2 pod\u00eda causar una denegaci\u00f3n de servicio mediante un archivo de GIF no v\u00e1lido."
    }
  ],
  "id": "CVE-2019-9635",
  "lastModified": "2024-11-21T04:52:01.043",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-24T17:29:00.863",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-001.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger writes outside of bounds of heap allocated buffers by inserting negative elements in the segment ids tensor. Users having access to `segment_ids_data` can alter `output_index` and then write to outside of `output_data` buffer. This might result in a segmentation fault but it can also be used to further corrupt the memory and can be chained with other vulnerabilities to create more advanced exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are all positive, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
    },
    {
      "lang": "es",
      "value": "En TensorFlow Lite versiones anteriores a 2.2.1 y 2.3.1, los modelos que utilizan la suma de segmentos pueden activar escrituras fuera de l\u00edmites de los b\u00faferes asignados de la pila insertando elementos negativos en el tensor de los ids de segmento. Los usuarios que tienen acceso a \"segment_ids_data\" pueden alterar \"output_index\" y luego escribir fuera del b\u00fafer de \"output_data\". Esto podr\u00eda resultar en un fallo de segmentaci\u00f3n, pero tambi\u00e9n se puede usar para corromper a\u00fan m\u00e1s la memoria y se puede encadenar con otras vulnerabilidades para crear explotaciones m\u00e1s avanzadas. El problema es parcheado en el commit 204945b19e44b57906c9344c0d00120eeeae178a y es publicado en TensorFlow versiones 2.2.1 o 2.3.1. Una soluci\u00f3n alternativa potencial ser\u00eda agregar un \"Verifier\" personalizado al c\u00f3digo de carga del modelo para asegurar que los ids de segmento sean todos positivos, aunque esto solo maneja el caso cuando los ids de segmento son almacenados est\u00e1ticamente en el modelo. Una comprobaci\u00f3n similar podr\u00eda ser realizada si los ids de segmento se generan en el tiempo de ejecuci\u00f3n entre los pasos de inferencia. Si los ids de segmento son generados como salidas de un tensor durante los pasos de inferencia, entonces no existe una posible soluci\u00f3n alternativa y se recomienda a los usuarios actualizar al c\u00f3digo parcheado"
    }
  ],
  "id": "CVE-2020-15212",
  "lastModified": "2024-11-21T05:05:06.047",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.3,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.7,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.510",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx2x-85gr-wrpq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una divisi\u00f3n entera por un comportamiento indefinido cero en \"tf.raw_ops.QuantizedBiasAdd\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n del kernel Eigen (https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) hace una divisi\u00f3n por el n\u00famero de elementos del entrada m\u00e1s peque\u00f1a (basada en una forma) sin comprobar que no sea cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29546",
  "lastModified": "2024-11-21T06:01:21.180",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.717",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Cuando se restauran tensores por medio de raw APIs, si no se proporciona el nombre del tensor, TensorFlow puede ser enga\u00f1ado para que haga desreferencia a un puntero null. Alternativamente, los atacantes pueden leer memoria fuera de l\u00edmites de los datos asignados a la pila al proporcionar algunos nombres de tensor pero no los suficientes para una restauraci\u00f3n con \u00e9xito. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) recupera la lista de tensores correspondiente a la entrada controlada por el usuario \"tensor_name\" y recupera inmediatamente el tensor en el \u00edndice de restauraci\u00f3n (controlado por medio del argumento \"preferred_shard\"). Esto ocurre sin comprender que la lista proporcionada presenta suficientes valores. Si la lista est\u00e1 vac\u00eda esto resulta en una desreferenciaci\u00f3n de puntero null (comportamiento indefinido). Sin embargo, si la lista presenta algunos elementos, si el \u00edndice de restauraci\u00f3n est\u00e1 fuera de l\u00edmites esto resulta en una lectura OOB de la pila. Hemos parcheado el problema en el commit de GitHub 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37639",
  "lastModified": "2024-11-21T06:15:34.983",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 8.4,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:08.707",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9e82dce6e6bd1f36a57e08fa85af213e2b2f2622"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gh6x-4whr-2qv4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementations of pooling in TFLite are vulnerable to division by 0 errors as there are no checks for divisors not being 0. We have patched the issue in GitHub commit [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695](https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695). The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, las implementaciones de agrupaci\u00f3n en TFLite son vulnerables a una divisi\u00f3n por 0, ya que no hay comprobaciones de que los divisores no sean 0. Hemos solucionado el problema en el commit de GitHub [dfa22b348b70bb89d6d6ec0ff53973bacb4f4695] (https://github.com/tensorflow/tensorflow / commit / dfa22b348b70bb89d6d6ec0ff53973bacb4f4695).\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37684",
  "lastModified": "2024-11-21T06:15:41.813",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.583",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q7f7-544h-67h9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 19:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.DenseCountSparseOutput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) computes a divisor value from user data but does not check that the result is 0 before doing the division. Since `data` is given by the `values` argument, `num_batch_elements` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, and TensorFlow 2.3.3, as these are also affected."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio por medio de un error de tiempo de ejecuci\u00f3n de FPE en \"tf.raw_ops.DenseCountSparseOutput\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/efff014f3b2d8ef6141da30c806faf141297eca1/tensorflow/core/kernels/count_ops.cc#L123-L127) calcula un valor divisor a partir de los datos del usuario pero no comprueba que el resultado es 0 antes de hacer la divisi\u00f3n.\u0026#xa0;Dado que \"data\" viene dado por el argumento \"values\", \"num_batch_elements\" es 0. La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2 y TensorFlow versi\u00f3n 2.3.3, ya que estos tambi\u00e9n est\u00e1n afectados"
    }
  ],
  "id": "CVE-2021-29554",
  "lastModified": "2024-11-21T06:01:22.210",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T19:15:07.800",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da5ff2daf618591f64b2b62d9d9803951b945e9f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qg48-85hg-mqc5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, and TensorFlow 2.4.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n \"tf.raw_ops.QuantizeAndDequantizeV4Grad\" es vulnerable a un problema de desbordamiento de enteros causado al convertir un valor entero con signo a uno sin signo y la posterior asignaci\u00f3n de memoria basada en este valor. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) usa el valor de \"axis\" como argumento del tama\u00f1o del constructor de \"absl::InlinedVector\". Pero, el constructor usa un tipo sin signo para el argumento, por lo que la conversi\u00f3n impl\u00edcita transforma el valor negativo en un entero grande. Hemos parcheado el problema en el commit 96f364a1ca3009f98980021c4b32be5fdcca33a1 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.5.1, y TensorFlow 2.4.3, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37645",
  "lastModified": "2024-11-21T06:15:35.897",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:07.887",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/96f364a1ca3009f98980021c4b32be5fdcca33a1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9w2p-5mgw-p94c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.ragged.constant` does not fully validate the input arguments. This results in a denial of service by consuming all available memory. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310ePatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/55199Issue Tracking, Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5cExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310ePatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/55199Issue Tracking, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5cExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.ragged.constant` does not fully validate the input arguments. This results in a denial of service by consuming all available memory. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.ragged.constant\" no comprueba completamente los argumentos de entrada. Esto resulta en una denegaci\u00f3n de servicio al consumir toda la memoria disponible. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29202",
  "lastModified": "2024-11-21T06:58:42.247",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.470",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55199"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/ops/ragged/ragged_factory_ops.py#L146-L239"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bd4d5583ff9c8df26d47a23e508208844297310e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55199"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwpm-f78v-7m5c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-400"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When converting transposed convolutions using per-channel weight quantization the converter segfaults and crashes the Python process. We have patched the issue in GitHub commit aa0b852a4588cea4d36b74feb05d93055540b450. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When converting transposed convolutions using per-channel weight quantization the converter segfaults and crashes the Python process. We have patched the issue in GitHub commit aa0b852a4588cea4d36b74feb05d93055540b450. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando son convertidas las convoluciones transpuestas usando la cuantificaci\u00f3n del peso por canal, el convertidor falla y es bloqueado el proceso de Python. Hemos parcheado el problema en el commit aa0b852a4588cea4d36b74feb05d93055540b450 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36027",
  "lastModified": "2024-11-21T07:12:12.940",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.430",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/53767"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aa0b852a4588cea4d36b74feb05d93055540b450"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/53767"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79h2-q768-fpxr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, el c\u00f3digo de inferencia de forma para \"tf.raw_ops.Dequantize\" presenta una vulnerabilidad que podr\u00eda desencadenar una denegaci\u00f3n de servicio por medio de un error de seguridad si un atacante proporciona argumentos no v\u00e1lidos.\u0026#xa0;La inferencia de forma [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) usa \"axis\" para seleccionar entre dos valores diferentes para \"minmax_rank \"que luego se usa para recuperar las dimensiones del tensor.\u0026#xa0;Sin embargo, el c\u00f3digo asume que el \"axis\" puede ser \"-1\" o un valor mayor que \"-1\", sin comprobaci\u00f3n para los otros valores.\u0026#xa0;Hemos solucionado el problema en GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5."
    }
  ],
  "id": "CVE-2021-37677",
  "lastModified": "2024-11-21T06:15:40.763",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.090",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions while calculating the size of the output within the `tf.range` kernel, there is a conditional statement of type `int64 = condition ? int64 : double`. Due to C++ implicit conversion rules, both branches of the condition will be cast to `double` and the result would be truncated before the assignment. This result in overflows. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, mientras se calcula el tama\u00f1o de la salida dentro del n\u00facleo \"tf.range\", se presenta una sentencia condicional de tipo \"int64 = condici\u00f3n ? int64 : double\". Debido a las reglas de conversi\u00f3n impl\u00edcitas de C++, ambas ramas de la condici\u00f3n se convertir\u00e1n en \"double\" y el resultado se truncar\u00e1 antes de la asignaci\u00f3n. Esto resulta en desbordamientos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41202",
  "lastModified": "2024-11-21T06:25:45.670",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.323",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46889"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46912"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b0e0ec27e7895b9985076eab32445026ae5ca94"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d94002a09711d297dbba90390d5482b76113899"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46889"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46912"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xrqm-fpgr-6hhx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a floating point exception in AudioSpectrogram. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a floating point exception in AudioSpectrogram. A fix is included in TensorFlow version 2.12.0 and version 2.11.1."
    }
  ],
  "id": "CVE-2023-25666",
  "lastModified": "2024-11-21T07:49:54.220",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.480",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d0d4e779da0d0f56499c6fa5ba09f0a576cc6b14"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f637-vh3r-vfh2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-697"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-23 21:29
Modified
2024-11-21 04:12
Summary
Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "B35C0672-200A-4B2A-AAB2-04FFCC582F5A",
              "versionEndIncluding": "1.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Google TensorFlow 1.6.x and earlier is affected by: Null Pointer Dereference. The type of exploitation is: context-dependent."
    },
    {
      "lang": "es",
      "value": "Google TensorFlow, versiones 1.6.x y anteriores, se ve afectado por: Desreferencia de puntero nulo. El tipo de explotaci\u00f3n es: dependiente del contexto."
    }
  ],
  "id": "CVE-2018-7576",
  "lastModified": "2024-11-21T04:12:24.070",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-23T21:29:00.223",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-002.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede activar una divisi\u00f3n por 0 en \"tf.raw_ops.Conv2D\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/988087bd83f144af14087fe4fecee2d250d93737/tensorflow/core/kernels/conv_ops.cc#L261-L263) hace una divisi\u00f3n por una cantidad que es controlada por la persona que llama.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29526",
  "lastModified": "2024-11-21T06:01:18.680",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.807",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b12aa1d44352de21d1a6faaf04172d8c2508b42b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vf2-4xcg-65cx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via `CHECK`-fail in `tf.strings.substr` with invalid arguments. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio por medio de \"CHECK\" - fallo en \"tf.strings.substr\" con argumentos no comprobados.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29617",
  "lastModified": "2024-11-21T06:01:30.217",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.223",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46900"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46974"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46900"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46974"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/890f7164b70354c57d40eda52dcdd7658677c09f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mmq6-q8r3-48fm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-755"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors. The implementation(https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPool3DGradGrad\" exhibe un comportamiento indefinido al desreferenciar los punteros nulls que respaldan los tensores vac\u00edos proporcionados por el atacante.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) no comprueba que las 3 entradas del tensor no est\u00e9n vac\u00edas.\u0026#xa0;Si alguno de ellos est\u00e1 vac\u00edo, acceder a los elementos del tensor resulta en una eliminaci\u00f3n de desreferencias de un puntero null.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29574",
  "lastModified": "2024-11-21T06:01:24.723",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.017",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Bajo determinados escenarios, TensorFlow puede fallar al especializar un tipo durante la inferencia de forma. Este caso est\u00e1 cubierto por la funci\u00f3n \"DCHECK\" sin embargo, \"DCHECK\" es un no-op en las construcciones de producci\u00f3n y un fallo de aserci\u00f3n en las construcciones de depuraci\u00f3n. En el primer caso la ejecuci\u00f3n procede a la l\u00ednea \"ValueOrDie\". Esto resulta en un fallo de aserci\u00f3n ya que \"ret\" contiene un error \"Status\", no un valor. En el segundo caso tambi\u00e9n es producido un fallo debido a una falta de aserci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, y TensorFlow versi\u00f3n 2.6.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23572",
  "lastModified": "2024-11-21T06:48:50.483",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.230",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de \"BlockLSTMGradV2\" no comprueba completamente sus entradas. Esto resulta en un fallo de seguridad que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 2a458fc4866505be27c62f81474ecb2b870498fa de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35964",
  "lastModified": "2024-11-21T07:12:03.920",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:08.890",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 21:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56Exploit, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "113B5FC0-ED39-4134-9722-A163B673E3EF",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.QuantizeAndDequantizeV4Grad\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29192",
  "lastModified": "2024-11-21T06:58:40.793",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T21:15:10.373",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `Conv2DBackpropInput` receives empty `out_backprop` inputs (e.g. `[3, 1, 0, 1]`), the current CPU/GPU kernels `CHECK` fail (one with dnnl, the other with cudnn). This can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `Conv2DBackpropInput` receives empty `out_backprop` inputs (e.g. `[3, 1, 0, 1]`), the current CPU/GPU kernels `CHECK` fail (one with dnnl, the other with cudnn). This can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"Conv2DBackpropInput\" recibe entradas \"out_backprop\" vac\u00edas (por ejemplo, \"[3, 1, 0, 1]\"), los n\u00facleos actuales de CPU/GPU \"CHECK\" fallan (uno con dnnl, el otro con cudnn). Esto puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 27a65a43cf763897fecfa5cdb5cc653fc5dd0346 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35999",
  "lastModified": "2024-11-21T07:12:09.023",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.587",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/27a65a43cf763897fecfa5cdb5cc653fc5dd0346"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-37jf-mjv6-xfqw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the code for `tf.raw_ops.SaveV2` does not properly validate the inputs and an attacker can trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) uses `ValidateInputs` to check that the input arguments are valid. This validation would have caught the illegal state represented by the reproducer above. However, the validation uses `OP_REQUIRES` which translates to setting the `Status` object of the current `OpKernelContext` to an error status, followed by an empty `return` statement which just terminates the execution of the function it is present in. However, this does not mean that the kernel execution is finalized: instead, execution continues from the next line in `Compute` that follows the call to `ValidateInputs`. This is equivalent to lacking the validation. We have patched the issue in GitHub commit 9728c60e136912a12d99ca56e106b7cce7af5986. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas el c\u00f3digo para \"tf.raw_ops.SaveV2\" no comprueba correctamente las entradas y un atacante puede desencadenar una desreferencia de puntero null. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/save_restore_v2_ops.cc) usa \"ValidateInputs\" para comprobar que los argumentos de entrada son v\u00e1lidos. Esta comprobaci\u00f3n habr\u00eda comprendido el estado ilegal representado por el reproductor anterior. Sin embargo, la comprobaci\u00f3n usa \"OP_REQUIRES\" que se traduce en establecer el objeto \"Status\" del actual \"OpKernelContext\" a un estado de error, seguido de una sentencia \"return\" vac\u00eda que simplemente termina la ejecuci\u00f3n de la funci\u00f3n en la que est\u00e1 presente. Sin embargo, esto no significa que la ejecuci\u00f3n del kernel haya finalizado: en su lugar, la ejecuci\u00f3n contin\u00faa a partir de la siguiente l\u00ednea en \"Compute\" que sigue a la llamada a \"ValidateInputs\". Esto equivale a que la comprobaci\u00f3n no se lleve a cabo. Hemos parcheado el problema en el commit 9728c60e136912a12d99ca56e106b7cce7af5986 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37648",
  "lastModified": "2024-11-21T06:15:36.307",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.027",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9728c60e136912a12d99ca56e106b7cce7af5986"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp77-4gmm-7cq8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don't match the type of data in `out` and `input_*` tensors then `flat<*>` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that any binary op would trigger `CHECK` failures. This occurs when the protobuf part corresponding to the tensor arguments is modified such that the `dtype` no longer matches the `dtype` expected by the op. In that case, calling the templated binary operator for the binary op would receive corrupted data, due to the type confusion involved. If `Tin` and `Tout` don\u0027t match the type of data in `out` and `input_*` tensors then `flat\u003c*\u003e` would interpret it wrongly. In most cases, this would be a silent failure, but we have noticed scenarios where this results in a `CHECK` crash, hence a denial of service. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un usuario malicioso puede causar una denegaci\u00f3n de servicio alterando un \"SavedModel\" de tal manera que cualquier operaci\u00f3n binaria desencadene fallos de \"CHECK\". Esto ocurre cuando la parte del protobuf correspondiente a los argumentos del tensor es modificada de forma que el \"dtype\" ya no coincide con el \"dtype\" esperado por la op. En ese caso, la llamada al operador binario templado para la op binaria recibir\u00eda datos corruptos, debido a la confusi\u00f3n de tipos implicada. Si \"Tin\" y \"Tout\" no coinciden con el tipo de datos de los tensores \"out\" y \"input_*\", entonces \"flat(*)\" lo interpretar\u00eda de forma err\u00f3nea. En la mayor\u00eda de los casos, esto ser\u00eda un fallo silencioso, pero hemos observado escenarios en los que esto resulta en un bloqueo de \"CHECK\", por lo tanto una denegaci\u00f3n de servicio. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23583",
  "lastModified": "2024-11-21T06:48:51.923",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.820",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/cwise_ops_common.h#L88-L137"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a7c02f1a9bbc35473969618a09ee5f9f5d3e52d9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjqc-q9g6-q2j3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una divisi\u00f3n del tiempo de ejecuci\u00f3n por error cero y denegaci\u00f3n de servicio en \"tf.raw_ops.QuantizedBatchNormWithGlobalNormalization\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) calcula una operaci\u00f3n de m\u00f3dulo sin comprobar que el divisor no es cero.\u0026#xa0;Dado que \"vector_num_elements\" se determina en funci\u00f3n de las formas de entrada (https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), un usuario puede desencadenar escenarios donde la catnidad es 0. La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2"
    }
  ],
  "id": "CVE-2021-29549",
  "lastModified": "2024-11-21T06:01:21.570",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.853",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/744009c9e5cc5d0447f0dc39d055f917e1fd9e16"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x83m-p7pv-ch8v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python's indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "7A5421A9-693F-472A-9A21-43950C884C77",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "B0FEB74E-5E54-4A2F-910C-FA1812C73DB2",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "47D83682-6615-49BC-8043-F36B9D017578",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, to mimic Python\u0027s indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds. If the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption. The issue is patched in commit 2d88f470dea2671b430884260f3626b1fe99830a, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En tensorflow-lite versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, para imitar la indexaci\u00f3n de Python con valores negativos, TFLite usa \"ResolveAxis\" para convertir valores negativos en \u00edndices positivos.\u0026#xa0;Sin embargo, la \u00fanica comprobaci\u00f3n de que el \u00edndice convertido ahora es v\u00e1lido solo est\u00e1 presente en las compilaciones de depuraci\u00f3n.\u0026#xa0;Si el \"DCHECK\" no se activa, entonces la ejecuci\u00f3n de c\u00f3digo avanza con un \u00edndice negativo.\u0026#xa0;Esto, a su vez, resulta en el acceso a los datos fuera de l\u00edmites, resultando en segmentaciones y/o una corrupci\u00f3n de lo datos.\u0026#xa0;El problema es parcheado en el commit 2d88f470dea2671b430884260f3626b1fe99830a, y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15207",
  "lastModified": "2024-11-21T05:05:05.250",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.8,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.0,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 6.0,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.993",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. It is possible to trigger a null pointer dereference in TensorFlow by passing an invalid input to `tf.raw_ops.CompressElement`. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) was accessing the size of a buffer obtained from the return of a separate function call before validating that said buffer is valid. We have patched the issue in GitHub commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. It is possible to trigger a null pointer dereference in TensorFlow by passing an invalid input to `tf.raw_ops.CompressElement`. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) was accessing the size of a buffer obtained from the return of a separate function call before validating that said buffer is valid. We have patched the issue in GitHub commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Es posible desencadenar una desreferencia de puntero null en TensorFlow pasando una entrada no v\u00e1lida a \"tf.raw_ops.CompressElement\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/data/compression_utils.cc#L34) estaba accediendo al tama\u00f1o de un buffer obtenido del retorno de una llamada a una funci\u00f3n separada antes de comprender que dicho buffer es v\u00e1lido. Hemos parcheado el problema en el commit 5dc7f6981fdaf74c8c5be41f393df705841fb7c5 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37637",
  "lastModified": "2024-11-21T06:15:34.700",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:08.500",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5dc7f6981fdaf74c8c5be41f393df705841fb7c5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9qf-r67m-p7cg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a use after free behavior when decoding PNG images. After `png::CommonFreeDecode(&decode)` gets called, the values of `decode.width` and `decode.height` are in an unspecified state. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a use after free behavior when decoding PNG images. After `png::CommonFreeDecode(\u0026decode)` gets called, the values of `decode.width` and `decode.height` are in an unspecified state. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un usuario malicioso puede causar un comportamiento de uso de memoria previamente liberada cuando decodifica im\u00e1genes PNG. Despu\u00e9s de llamar a \"png::CommonFreeDecode(\u0026amp;decode)\", los valores de \"decode.width\" y \"decode.height\" est\u00e1n en un estado no especificado. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23584",
  "lastModified": "2024-11-21T06:48:52.053",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.873",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/image/decode_image_op.cc#L339-L346"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e746adbfcfee15e9cfdb391ff746c765b99bdf9b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x4-6qmh-88qg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-416"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.io.decode_raw\" produce resultados incorrectos y bloquea el int\u00e9rprete de Python al combinar \"fixed_length\" y tipos de datos m\u00e1s amplios.\u0026#xa0;La implementaci\u00f3n de la versi\u00f3n acolchada (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) presenta errores debido a una confusi\u00f3n acerca de las reglas aritm\u00e9ticas de punteros.\u0026#xa0;Primero, el c\u00f3digo calcula (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) el ancho de cada elemento de salida dividiendo el valor de la longitud fija del tipo argumento.\u0026#xa0;El argumento \"fixed_length\" tambi\u00e9n es usado para determinar el tama\u00f1o necesario para el tensor de salida (https: //github.\u0026#xa0;com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79).\u0026#xa0;A continuaci\u00f3n, se vuelve a codificar el c\u00f3digo (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94).\u0026#xa0;El c\u00f3digo err\u00f3neo es la \u00faltima l\u00ednea de arriba: est\u00e1 moviendo el puntero \"out_data\" en bytes de \"fixed_length * sizeof(T)\" mientras que s\u00f3lo copi\u00f3 como m\u00e1ximo los bytes de \"fixed_length\" de la entrada.\u0026#xa0;Esto resulta en que partes de la entrada no se descodifiquen en una salida.\u0026#xa0;Adem\u00e1s, debido a que el avance del puntero es mucho m\u00e1s amplio de lo deseado, esto conlleva r\u00e1pidamente a escribir fuera de l\u00edmites de los datos de respaldo.\u0026#xa0;Esta escritura OOB provoca un bloqueo del int\u00e9rprete en el reproductor mencionado aqu\u00ed, pero tambi\u00e9n puede ser montar ataques m\u00e1s severos,\u0026#xa0;dado que este gadget permite escribir en ubicaciones colocadas peri\u00f3dicamente en una memoria.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29614",
  "lastModified": "2024-11-21T06:01:29.827",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.080",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-665"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.QuantizeAndDequantizeV4Grad`. This is because the implementation does not validate the rank of the `input_*` tensors. In turn, this results in the tensors being passes as they are to `QuantizeAndDequantizePerChannelGradientImpl`. However, the `vec<T>` method, requires the rank to 1 and triggers a `CHECK` failure otherwise. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.QuantizeAndDequantizeV4Grad`. This is because the implementation does not validate the rank of the `input_*` tensors. In turn, this results in the tensors being passes as they are to `QuantizeAndDequantizePerChannelGradientImpl`. However, the `vec\u003cT\u003e` method, requires the rank to 1 and triggers a `CHECK` failure otherwise. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 as this is the only other affected version."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de \"CHECK\" en \"tf.raw_ops.QuantizeAndDequantizeV4Grad\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L162-L163) no comprueba el rango de los tensores \"input_ *\".\u0026#xa0;A su vez, esto resulta en que los tensores pasen tal como est\u00e1n a \"QuantizeAndDequantizePerChannelGradientImpl\" (https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_op. Sin embargo, el m\u00e9todo \"vec(T)\" requiere el rango de 1 y, de lo contrario, desencadena un fallo \"CHECK\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29544",
  "lastModified": "2024-11-21T06:01:20.900",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.623",
  "references": [
    {
      "source": "security-advisories@github.com",
      "url": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L162-L163"
    },
    {
      "source": "security-advisories@github.com",
      "url": "https://github.com/tensorflow/tensorflow/blob/95078c145b5a7a43ee046144005f733092756ab5/tensorflow/core/kernels/quantize_and_dequantize_op.h#L295-L306"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/20431e9044cf2ad3c0323c34888b192f3289af6b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6g85-3hm8-83f9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/20431e9044cf2ad3c0323c34888b192f3289af6b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6g85-3hm8-83f9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.SparseSplit`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accesses an array element based on a user controlled offset. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de pila en \"tf.raw_ops.SparseSplit\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/699bff5d961f0abfde8fa3f876e6d241681fbef8/tensorflow/core/util/sparse/sparse_tensor.h#L528-L530) accede a un elemento de matriz basado en un desplazamiento controlado por el usuario.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29558",
  "lastModified": "2024-11-21T06:01:22.757",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.290",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ba6fa29cd8bf9cef9b718dc31c78c73081f5b31"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mqh2-9wrp-vx84"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 are vulnerable to integer overflow in EditDistance. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 are vulnerable to integer overflow in EditDistance. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25662",
  "lastModified": "2024-11-21T07:49:53.717",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.260",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/08b8e18643d6dcde00890733b270ff8d9960c56c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7jvm-xxmr-v5cw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions most implementations of convolution operators in TensorFlow are affected by a division by 0 vulnerability where an attacker can trigger a denial of service via a crash. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) is missing several validations before doing divisions and modulo operations. We have patched the issue in GitHub commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions most implementations of convolution operators in TensorFlow are affected by a division by 0 vulnerability where an attacker can trigger a denial of service via a crash. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) is missing several validations before doing divisions and modulo operations. We have patched the issue in GitHub commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la mayor\u00eda de las implementaciones de los operadores de convoluci\u00f3n en TensorFlow est\u00e1n afectadas por una vulnerabilidad de divisi\u00f3n por 0 en la que un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un bloqueo. La [implementaci\u00f3n] de la forma (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/framework/common_shape_fns.cc#L577) carece de varias comprobaciones antes de realizar divisiones y operaciones de m\u00f3dulo. Hemos parcheado el problema en el commit 8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37675",
  "lastModified": "2024-11-21T06:15:40.430",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.557",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a793b5d7f59e37ac7f3cd0954a750a2fe76bad4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-2mv3-49ww"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121dPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080aPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121dPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080aPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don\u0027t have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, varias operaciones de TensorFlow no comprueban las formas de los argumentos del tensor involucrados en la llamada. Dependiendo de la API, esto puede resultar en un comportamiento indefinido y a ca\u00eddas relacionadas con segfault o \"CHECK\"-fail, pero en algunos escenarios tambi\u00e9n son posibles las escrituras y lecturas de arrays poblados por la pila. Hemos detectado estos problemas internamente por medio de herramientas mientras trabaj\u00e1bamos en mejorar/probar el determinismo de las operaciones de la GPU. Por lo tanto, no tenemos reproductores y habr\u00e1 m\u00faltiples correcciones para estos problemas. Estas correcciones ser\u00e1n incluidas en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a recoger estos commits en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango admitido"
    }
  ],
  "id": "CVE-2021-41206",
  "lastModified": "2024-11-21T06:25:46.353",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.0,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.397",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4d74d8a00b07441cba090a02e0dd9ed385145bf4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4dddb2fd0b01cdd196101afbba6518658a2c9e07"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/579261dcd446385831fe4f7457d802a59685121d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/68422b215e618df5ad375bcdc6d2052e9fd3080a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da4aad5946be30e5f049920fa076e1f7ef021261"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e7f497570abb6b4ae5af4970620cd880e4c0c904"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pgcq-h79j-2f69"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-354"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.ccExploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.ccExploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43Patch, Third Party Advisory
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementations of `Sparse*Cwise*` ops are vulnerable to integer overflows. These can be used to trigger large allocations (so, OOM based denial of service) or `CHECK`-fails when building new `TensorShape` objects (so, assert failures based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. Las implementaciones de las operaciones \"Sparse*Cwise*\" son vulnerables a desbordamientos de enteros. Estos pueden ser usados para desencadenar grandes asignaciones (por tanto, denegaci\u00f3n de servicio basada en OOM) o fallos de \"CHECK\" cuando son construidos nuevos objetos \"TensorShape\" (por tanto, denegaci\u00f3n de servicio basada en fallos de assert). Nos falta algo de comprobaci\u00f3n en las formas de los tensores de entrada, as\u00ed como construir directamente un \"TensorShape\" grande con las dimensiones proporcionadas por el usuario. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23567",
  "lastModified": "2025-05-05T17:17:57.133",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:08.117",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1b54cadd19391b60b6fcccd8d076426f7221d5e8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e952a89b7026b98fe8cbe626514a93ed68b7c510"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrx2-r989-2c43"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `RaggedTensorToVariant` is given a `rt_nested_splits` list that contains tensors of ranks other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `RaggedTensorToVariant` is given a `rt_nested_splits` list that contains tensors of ranks other than one, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"RaggedTensorToVariant\" le es dada una lista \"rt_nested_splits\" que contiene tensores de rangos diferentes a uno, es producido un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 88f93dfe691563baa4ae1e80ccde2d5c7a143821 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36018",
  "lastModified": "2024-11-21T07:12:11.690",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.827",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/88f93dfe691563baa4ae1e80ccde2d5c7a143821"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6cv-4fmf-66xf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Las operaciones en \"tf.raw_ops.Conv3DBackprop*\" no comprueban que los tensores de entrada no est\u00e9n vac\u00edos.\u0026#xa0;A su vez, esto resultar\u00eda en una divisi\u00f3n por 0. Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) no comprueba que el divisor usado para calcular el tama\u00f1o del fragmento no es cero.\u0026#xa0;Por lo tanto, si el atacante controla los tama\u00f1os de entrada, puede desencadenar una denegaci\u00f3n de servicio por medio de una error de divisi\u00f3n por cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29522",
  "lastModified": "2024-11-21T06:01:18.193",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.617",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in embedding lookup operations. Both `embedding_size` and `lookup_size` are products of values provided by the user. Hence, a malicious user could trigger overflows in the multiplication. In certain scenarios, this can then result in heap OOB read/write. Users are advised to upgrade to a patched version.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5Patch, Third Party Advisory
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in embedding lookup operations. Both `embedding_size` and `lookup_size` are products of values provided by the user. Hence, a malicious user could trigger overflows in the multiplication. In certain scenarios, this can then result in heap OOB read/write. Users are advised to upgrade to a patched version."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo TFLite que cause un desbordamiento de enteros en las operaciones de b\u00fasqueda de inserci\u00f3n. Tanto \"embedding_size\" como \"lookup_size\" son productos de valores proporcionados por el usuario. Por lo tanto, un usuario malicioso podr\u00eda desencadenar desbordamientos en la multiplicaci\u00f3n. En determinados escenarios, esto puede resultar en una lectura/escritura de OOB de la pila. Se aconseja a usuarios que actualicen a una versi\u00f3n parcheada"
    }
  ],
  "id": "CVE-2022-23559",
  "lastModified": "2024-11-21T06:48:48.760",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.673",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/embedding_lookup_sparse.cc#L179-L189"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1de49725a5fc4e48f1a3b902ec3599ee99283043"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a4e401da71458d253b05e41f28637b65baf64be4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f19be71717c497723ba0cea0379e84f061a75e01"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98p5-x8x4-c9m5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. This is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements. We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede dise\u00f1ar un modelo TFLite que podr\u00eda desencadenar una desreferencia de puntero null, que resultar\u00eda en un bloqueo y una denegaci\u00f3n de servicio. Esto es causado por la optimizaci\u00f3n MLIR del operador \"L2NormalizeReduceAxis\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) hace desreferencia incondicional a un puntero a un iterador a un vector sin comprobar que el vector presenta elementos. Hemos parcheado el problema en el commit d6b57f461b39fd1aa8c1b870f1b974aac3554955 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37689",
  "lastModified": "2024-11-21T06:15:42.547",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:09.190",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "7A5421A9-693F-472A-9A21-43950C884C77",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "B0FEB74E-5E54-4A2F-910C-FA1812C73DB2",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "47D83682-6615-49BC-8043-F36B9D017578",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a `DCHECK` which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue is patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En tensorflow-lite versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, al determinar el tama\u00f1o de dimensi\u00f3n com\u00fan de dos tensores, TFLite usa un \"DCHECK\" que no es operativo fuera de los modos de compilaci\u00f3n de depuraci\u00f3n.\u0026#xa0;Dado que la funci\u00f3n siempre devuelve la dimensi\u00f3n del primer tensor, los atacantes maliciosos pueden crear casos en los que este sea mayor que el del segundo tensor.\u0026#xa0;A su vez, esto resultar\u00eda en lecturas y escrituras fuera de l\u00edmites, ya que el int\u00e9rprete asumir\u00e1 incorrectamente que existen suficientes datos en ambos tensores.\u0026#xa0;El problema es parcheado en el commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d, y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15208",
  "lastModified": "2024-11-21T05:05:05.420",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 7.4,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.103",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ee24e7949a203d234489f9da2c5bf45a7d5157d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mxjj-953w-2c2v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 15:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` is vulnerable to a heap overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseCountSparseOutput` is vulnerable to a heap overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"SparseCountSparseOutput\" es vulnerable a un desbordamiento de pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21740",
  "lastModified": "2025-05-05T17:17:51.060",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T15:15:08.013",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/count_ops.cc#L168-L273"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2b7100d6cdff36aa21010a82269bc05a6d1cc74a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/adbbabdb0d3abb3cdeac69e38a96de1d678b24b3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-44qp-9wwf-734r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `SafeToRemoveIdentity` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `SafeToRemoveIdentity` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. El optimizador Grappler en TensorFlow puede ser usado para causar una denegaci\u00f3n de servicio alterando un \"SavedModel\" de tal forma que \"SafeToRemoveIdentity\" desencadene fallos de \"CHECK\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23579",
  "lastModified": "2024-11-21T06:48:51.380",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/dependency_optimizer.cc#L59-L98"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/92dba16749fae36c246bec3f9ba474d9ddeb7662"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5f2r-qp73-37mr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListResize` is given a nonscalar value for input `size`, it results `CHECK` fail which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 888e34b49009a4e734c27ab0c43b0b5102682c56. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListResize` is given a nonscalar value for input `size`, it results `CHECK` fail which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 888e34b49009a4e734c27ab0c43b0b5102682c56. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `tf.raw_ops.TensorListResize` se le asigna un valor no escalar para la entrada `size`, se produce un error de `CHECK` que puede usarse para desencadenar un ataque de Denegaci\u00f3n de Servicio (DoS). Hemos solucionado el problema en el commit de GitHub 888e34b49009a4e734c27ab0c43b0b5102682c56. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41893",
  "lastModified": "2024-11-21T07:24:00.650",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:17.070",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/888e34b49009a4e734c27ab0c43b0b5102682c56"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-67pf-62xr-q35m"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/888e34b49009a4e734c27ab0c43b0b5102682c56"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-67pf-62xr-q35m"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `OneHot` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72). An attacker can craft a model such that at least one of the dimensions of `indices` would be 0. In turn, the `prefix_dim_size` value would become 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador TFLite \"OneHot\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/f61c57bd425878be108ec787f4d96390579fb83e/tensorflow/lite/kernels/one_hot.cc#L68-L72).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo de modo que al menos una de las dimensiones de \"\u00edndices\" sea 0. A su vez, el valor de \"prefix_dim_size\" se convertir\u00eda en 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29600",
  "lastModified": "2024-11-21T06:01:27.987",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.443",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3ebedd7e345453d68e279cfc3e4072648e5e12e5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qh-3xrq-c825"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ImageProjectiveTransformV2` is given a large output shape, it overflows. We have patched the issue in GitHub commit 8faa6ea692985dbe6ce10e1a3168e0bd60a723ba. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ImageProjectiveTransformV2` is given a large output shape, it overflows. We have patched the issue in GitHub commit 8faa6ea692985dbe6ce10e1a3168e0bd60a723ba. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando a `tf.raw_ops.ImageProjectiveTransformV2` se le da una forma de salida grande, se desborda. Hemos solucionado el problema en Github, en el commit  8faa6ea692985dbe6ce10e1a3168e0bd60a723ba. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n aplicaremos esta commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41886",
  "lastModified": "2024-11-21T07:23:59.637",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:14.553",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/image_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8faa6ea692985dbe6ce10e1a3168e0bd60a723ba"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54pp-c6pp-7fpx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/image_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8faa6ea692985dbe6ce10e1a3168e0bd60a723ba"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54pp-c6pp-7fpx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListConcat` is given `element_shape=[]`, it results segmentation fault which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit fc33f3dc4c14051a83eec6535b608abe1d355fde. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `tf.raw_ops.TensorListConcat` is given `element_shape=[]`, it results segmentation fault which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit fc33f3dc4c14051a83eec6535b608abe1d355fde. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `tf.raw_ops.TensorListConcat` se le asigna `element_shape=[]`, se produce un error de segmentaci\u00f3n que puede utilizarse para desencadenar un ataque de Denegaci\u00f3n de Servicio (DoS). Hemos solucionado el problema en el commit de GitHub fc33f3dc4c14051a83eec6535b608abe1d355fde. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41891",
  "lastModified": "2024-11-21T07:24:00.317",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:16.657",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.h"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fc33f3dc4c14051a83eec6535b608abe1d355fde"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-66vq-54fq-6jvv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/list_kernels.h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fc33f3dc4c14051a83eec6535b608abe1d355fde"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-66vq-54fq-6jvv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-Other"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-12-06 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "471595C4-437A-4DDA-A4CA-91FF1E1CD7A6",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. La funci\u00f3n MakeGrapplerFunctionItem toma argumentos que determinan los tama\u00f1os de entradas y salidas. Si las entradas proporcionadas son mayores o iguales que los tama\u00f1os de las salidas, se desencadena una lectura de memoria fuera de los l\u00edmites o un bloqueo. Hemos solucionado el problema en el commit de GitHub a65411a1d69edfb16b25907ffb8f73556ce36bb7. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.8.4, 2.9.3 y 2.10.1."
    }
  ],
  "id": "CVE-2022-41902",
  "lastModified": "2024-11-21T07:24:01.860",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-12-06T22:15:10.513",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cg88-rpvp-cjv5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cg88-rpvp-cjv5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params->stride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Optimized pooling implementations in TFLite fail to check that the stride arguments are not 0 before calling `ComputePaddingHeightWidth`(https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernels/pooling.cc#L90). Since users can craft special models which will have `params-\u003estride_{height,width}` be zero, this will result in a division by zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Las implementaciones de agrupaci\u00f3n optimizadas en TFLite no pueden comprobar que los argumentos de stride no sean 0 versiones anteriores a llamar a la funci\u00f3n \"ComputePaddingHeightWidth\" (https://github.com/tensorflow/tensorflow/blob/3f24ccd932546416ec906a02ddd183b48a1d2c83/tensorflow/lite/kernel#s/pooling).\u0026#xa0;Dado que los usuarios pueden dise\u00f1ar modelos especiales que tendr\u00e1n \"params-\u0026gt; stride_ {height, width}\" ser cero, esto resultar\u00e1 en una divisi\u00f3n por cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29586",
  "lastModified": "2024-11-21T06:01:26.187",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.627",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5f7975d09eac0f10ed8a17dbb6f5964977725adc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-26j7-6w8w-7922"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 21:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. When ops that have specified input sizes receive a differing number of inputs, the executor will crash. We have patched the issue in GitHub commit f5381e0e10b5a61344109c1b7c174c68110f7629. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow 2.10.0
google tensorflow 2.10.0
google tensorflow 2.10.0
google tensorflow 2.10.0
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "471595C4-437A-4DDA-A4CA-91FF1E1CD7A6",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "B5F5D78E-DBBA-4CC7-ADB1-454F86700280",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "EF6375A0-9871-4072-95F0-4266620F4713",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "534F3684-3E31-4A0A-9821-70EEFA8AB258",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "E1D5EAED-B494-4E30-AB79-99BD1876B5FA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When ops that have specified input sizes receive a differing number of inputs, the executor will crash. We have patched the issue in GitHub commit f5381e0e10b5a61344109c1b7c174c68110f7629. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando las operaciones que tienen tama\u00f1os de entrada espec\u00edficos reciben una cantidad diferente de entradas, el ejecutor fallar\u00e1. Hemos solucionado el problema en el commit de GitHub f5381e0e10b5a61344109c1b7c174c68110f7629. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41883",
  "lastModified": "2024-11-21T07:23:59.090",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.1,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T21:15:10.923",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/dynamic_stitch_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/data_flow_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f5381e0e10b5a61344109c1b7c174c68110f7629"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w58w-79xv-6vcj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/dynamic_stitch_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/data_flow_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f5381e0e10b5a61344109c1b7c174c68110f7629"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w58w-79xv-6vcj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `ParseAttrValue`(https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) can be tricked into stack overflow due to recursion by giving in a specially crafted input. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"ParseAttrValue\" (https://github.com/tensorflow/tensorflow/blob/c22d88d6ff33031aa113e48aa3fc9aa74ed79595/tensorflow/core/framework/attr_value_util.cc#L397-L453) puede ser enga\u00f1ado en el desbordamiento de la pila debido a una recursividad mediante la entrega de una entrada especialmente dise\u00f1ada.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29615",
  "lastModified": "2024-11-21T06:01:29.960",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.127",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e07e1c3d26492c06f078c7e5bf2d138043e199c1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qw5h-7f53-xrp6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-674"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow's implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the Keras pooling layers can trigger a segfault if the size of the pool is 0 or if a dimension is negative. This is due to the TensorFlow\u0027s implementation of pooling operations where the values in the sliding window are not checked to be strictly positive. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, las capas de pooling de Keras pueden provocar un segfault si el tama\u00f1o del pool es 0 o si una dimensi\u00f3n es negativa. Esto es debido a la implementaci\u00f3n de TensorFlow de las operaciones de pooling donde no es comprobado que los valores de la ventana deslizante sean estrictamente positivos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41196",
  "lastModified": "2024-11-21T06:25:44.687",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:07.780",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/51936"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/12b1ff82b3f26ff8de17e58703231d5a02ef1b8b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/51936"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m539-j985-hcr8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-191"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-191"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `tensorflow::full_type::SubstituteFromAttrs` receives a `FullTypeDef& t` that is not exactly three args, it triggers a `CHECK`-fail instead of returning a status. We have patched the issue in GitHub commit 6104f0d4091c260ce9352f9155f7e9b725eab012. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tensorflow::full_type::SubstituteFromAttrs` receives a `FullTypeDef\u0026 t` that is not exactly three args, it triggers a `CHECK`-fail instead of returning a status. We have patched the issue in GitHub commit 6104f0d4091c260ce9352f9155f7e9b725eab012. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"tensorflow::full_type::SubstituteFromAttrs\" recibe un \"FullTypeDef\u0026amp; t\" que no presenta exactamente tres argumentos, desencadena un fallo de \"CHECK\" en lugar de devolver un estado. Hemos parcheado el problema en el commit 6104f0d4091c260ce9352f9155f7e9b725eab012 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36016",
  "lastModified": "2024-11-21T07:12:11.417",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6104f0d4091c260ce9352f9155f7e9b725eab012"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g468-qj8g-vcjc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a segmentation fault in `tf.raw_ops.MaxPoolGrad` caused by missing validation. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) misses some validation for the `orig_input` and `orig_output` tensors. The fixes for CVE-2021-29579 were incomplete. We have patched the issue in GitHub commit 136b51f10903e044308cf77117c0ed9871350475. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo de segmentaci\u00f3n en \"tf.raw_ops.MaxPoolGrad\" causada por una falta de comprobaci\u00f3n.\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/maxpooling_op.cc) pierde alguna comprobaci\u00f3n para los tensores \"orig_input\" y\" orig_output\".\u0026#xa0;Las correcciones para CVE-2021-29579 estaban incompletas.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub 136b51f10903e044308cf77117c0ed9871350475.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37674",
  "lastModified": "2024-11-21T06:15:40.277",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.970",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-068.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/136b51f10903e044308cf77117c0ed9871350475"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7ghq-fvr3-pj2x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, there is a potential for segfault / denial of service in TensorFlow by calling `tf.compat.v1.*` ops which don't yet have support for quantized types, which was added after migration to TensorFlow 2.x. In these scenarios, since the kernel is missing, a `nullptr` value is passed to `ParseDimensionValue` for the `py_value` argument. Then, this is dereferenced, resulting in segfault. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, there is a potential for segfault / denial of service in TensorFlow by calling `tf.compat.v1.*` ops which don\u0027t yet have support for quantized types, which was added after migration to TensorFlow 2.x. In these scenarios, since the kernel is missing, a `nullptr` value is passed to `ParseDimensionValue` for the `py_value` argument. Then, this is dereferenced, resulting in segfault. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, se presenta la posibilidad de que se produzca un fallo de seguridad o una denegaci\u00f3n de servicio en TensorFlow al llamar a las operaciones \"tf.compat.v1.*\" que a\u00fan no presentan soporte para los tipos cuantificados, lo que fue a\u00f1adido despu\u00e9s de la migraci\u00f3n a TensorFlow 2.x. En estos casos, al faltar el n\u00facleo, es pasado un valor \"nullptr\" a \"ParseDimensionValue\" para el argumento \"py_value\". Entonces, este es desreferenciado, resultando en un segfault. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29205",
  "lastModified": "2024-11-21T06:58:42.727",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.687",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L296-L320"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/eager/pywrap_tfe_src.cc#L480-L482"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/237822b59fc504dda2c564787f5d3ad9c4aa62d9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-54ch-gjq5-4976"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        },
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "098D203F-851D-4C34-8D66-88EDEEC2021D",
              "versionEndIncluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.ReverseSequence` allows for stack overflow and/or `CHECK`-fail based denial of service. The implementation(https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) fails to validate that `seq_dim` and `batch_dim` arguments are valid. Negative values for `seq_dim` can result in stack overflow or `CHECK`-failure, depending on the version of Eigen code used to implement the operation. Similar behavior can be exhibited by invalid values of `batch_dim`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.ReverseSequence\" permite el desbordamiento de pila y/o la denegaci\u00f3n de servicio basada en fallos de` CHECK`.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/5b3b071975e01f0d250c928b2a8f901cd53b90a7/tensorflow/core/kernels/reverse_sequence_op.cc#L114-L118) no comprueba que \"seq_dim\" y \"batch_dim\" son v\u00e1lidos.\u0026#xa0;Los valores negativos de \"sq_dim\" pueden causar un desbordamiento de la pila o un fallo de \"CHECK\", seg\u00fan la versi\u00f3n del c\u00f3digo Eigen usada para implementar la operaci\u00f3n.\u0026#xa0;Los valores no comprobados de \"batch_dim\" pueden mostrar un comportamiento similar.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4"
    }
  ],
  "id": "CVE-2021-29575",
  "lastModified": "2024-11-21T06:01:24.843",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.060",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ecf768cbe50cedc0a45ce1ee223146a3d3d26d23"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6qgm-fv6v-rfpv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. `DenseBincount` assumes its input tensor `weights` to either have the same shape as its input tensor `input` or to be length-0. A different `weights` shape will trigger a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf4c14353c2328636a18bfad1e151052c81d5f43. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. \"DenseBincount\" asume que su tensor de entrada \"pesos\" presenta la misma forma que su tensor de entrada \"input\" o es de longitud 0. Una forma diferente de \"weights\" desencadenar\u00e1 un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit bf4c14353c2328636a18bfad1e151052c81d5f43 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35987",
  "lastModified": "2024-11-21T07:12:07.277",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.547",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf4c14353c2328636a18bfad1e151052c81d5f43"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w62h-8xjm-fv49"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseReshape` results in a denial of service based on a `CHECK`-failure. The implementation(https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) has no validation that the input arguments specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are the only affected versions."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Una comprobaci\u00f3n incompleta en \"SparseReshape\" resulta en una denegaci\u00f3n de servicio basada en un fallo \"CHECK\".\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/e87b51ce05c3eb172065a6ea5f48415854223285/tensorflow/core/kernels/sparse_reshape_op.cc#L40) no presenta comprobaci\u00f3n de que los argumentos de entrada especifiquen un tensor disperso v\u00e1lido.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2 y TensorFlow 2.3.3, ya que estas son las \u00fanicas versiones afectadas"
    }
  ],
  "id": "CVE-2021-29611",
  "lastModified": "2024-11-21T06:01:29.440",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 3.6,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.947",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1d04d7d93f4ed3854abf75d6b712d72c3f70d6b6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9rpc-5v9q-5r7f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-665"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `SparseTensorSliceDataset` has an undefined behavior: under certain condition it can be made to dereference a `nullptr` value. The 3 input arguments to `SparseTensorSliceDataset` represent a sparse tensor. However, there are some preconditions that these arguments must satisfy but these are not validated in the implementation. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"SparseTensorSliceDataset\" presenta un comportamiento indefinido: bajo determinadas condiciones puede hacerse referencia a un valor \"nullptr\". Los 3 argumentos de entrada de \"SparseTensorSliceDataset\" representan un tensor disperso. Sin embargo, se presentan algunas precondiciones que estos argumentos deben satisfacer, pero no es comprobado en la implementaci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21736",
  "lastModified": "2025-05-05T17:17:50.273",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:08.060",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L227-L292"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/965b97e4a9650495cda5a8c210ef6684b4b9eceb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pfjj-m3jj-9jc9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `BatchToSpaceNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_nd.cc#L81-L82). An attacker can craft a model such that one dimension of the `block` input is 0. Hence, the corresponding value in `block_shape` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador TFLite \"BatchToSpaceNd\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/b5ed552fe55895aee8bd8b191f744a069957d18d/tensorflow/lite/kernels/batch_to_space_ndL.cc#L).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que una dimensi\u00f3n de la entrada del \"block\" sea 0. Por lo tanto, el valor correspondiente en  \"block_shape\" es 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29593",
  "lastModified": "2024-11-21T06:01:27.077",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.117",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2c74674348a4708ced58ad6eb1b23354df8ee044"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfx7-2xpc-8w4h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 11:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `Dequantize` is vulnerable to an integer overflow weakness. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked, and, since the code computes `axis + 1`, an attacker can trigger an integer overflow. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de la inferencia de formas para \"Dequantize\" es vulnerable a una debilidad de desbordamiento de enteros. El argumento \"axis\" puede ser \"-1\" (el valor por defecto para el argumento opcional) o cualquier otro valor positivo como m\u00e1ximo el n\u00famero de dimensiones de la entrada. Desafortunadamente, el l\u00edmite superior no es comprobado y, dado que el c\u00f3digo calcula \"axis + 1\", un atacante puede desencadenar un desbordamiento de enteros. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21727",
  "lastModified": "2025-05-05T17:17:48.730",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T11:15:07.953",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L3001-L3034"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b64638ec5ccaa77b7c1eb90958e3d85ce381f91b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c6fh-56w7-fvjw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) uses the same value to index in two different arrays but there is no guarantee that the sizes are identical. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPoolGradWithArgmax\" puede causar una lectura fuera de l\u00edmites de los datos asignados a la pila si el atacante suministra entradas especialmente dise\u00f1adas.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ef0c008ee84bad91ec6725ddc42091e19a30cf0e/tensorflow/core/kernels/maxpooling_op.cc#L1016-L1017) usa el mismo valor para indexar en dos matrices diferentes, pero no hay garant\u00eda de que los tama\u00f1os son id\u00e9nticos.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29570",
  "lastModified": "2024-11-21T06:01:24.230",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.833",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dcd7867de0fea4b72a2b34bd41eb74548dc23886"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-545v-42p7-98fq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de la pila en la funci\u00f3n \"QuantizedMul\" al pasar umbrales no comprobados para la cuantificaci\u00f3n.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) asume que los 4 argumentos son siempre escalares v\u00e1lidos e intenta acceder al valor num\u00e9rico directamente.\u0026#xa0;Sin embargo, si alguno de estos tensores est\u00e1 vac\u00edo, entonces \".flat(T)()\" es un b\u00fafer vac\u00edo y acceder al elemento en una posici\u00f3n 0 resulta en un desbordamiento.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29535",
  "lastModified": "2024-11-21T06:01:19.823",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.210",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don't prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.RaggedTensorToTensor`, an attacker can exploit an undefined behavior if input arguments are empty. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) only checks that one of the tensors is not empty, but does not check for the other ones. There are multiple `DCHECK` validations to prevent heap OOB, but these are no-op in release builds, hence they don\u0027t prevent anything. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Debido a una falta de comprobaci\u00f3n en \"tf.raw_ops.RaggedTensorToTensor\", un atacante puede explotar un comportamiento indefinido si los argumentos de entrada est\u00e1n vac\u00edos.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L356-L360) solo comprueba que uno de los tensores no est\u00e9 vac\u00edo, sino que no comprueba si est\u00e1 vac\u00edo, otros.\u0026#xa0;Se presentan m\u00faltiples comprobaciones de \"DCHECK\" para evitar la pila de OOB, pero estas no son operativas en unas versiones de lanzamiento, por lo que no evitan nada.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commits en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que tambi\u00e9n est\u00e1n afectadas y a\u00fan se encuentran en el rango compatible"
    }
  ],
  "id": "CVE-2021-29608",
  "lastModified": "2024-11-21T06:01:29.043",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 4.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.803",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b761c9b652af2107cfbc33efd19be0ce41daa33e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c4d7afb6a5986b04505aca4466ae1951686c80f6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f94ef358bb3e91d517446454edff6535bcfe8e4a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rgvq-pcvf-hx75"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The code for `tf.raw_ops.UncompressElement` can be made to trigger a null pointer dereference. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtains a pointer to a `CompressedElement` from a `Variant` tensor and then proceeds to dereference it for decompressing. There is no check that the `Variant` tensor contained a `CompressedElement`, so the pointer is actually `nullptr`. We have patched the issue in GitHub commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Un c\u00f3digo para \"tf.raw_ops.UncompressElement\" se puede hacer parque podr\u00eda desencadenar una desreferencia de puntero null. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/compression_ops.cc#L50-L53) obtiene un puntero a un \"CompressedElement\" desde un tensor \"Variant\" y luego procede a desreferenciarlo para descomprimirlo. No se comprueba que el tensor \"Variant\" contenga un \"CompressedElement\", por lo que el puntero es en realidad \"nullptr\". Hemos parcheado el problema en el commit 7bdf50bb4f5c54a4997c379092888546c97c3ebd de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow 2.5.1, TensorFlow 2.4.3, y TensorFlow 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37649",
  "lastModified": "2024-11-21T06:15:36.483",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:09.057",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7bdf50bb4f5c54a4997c379092888546c97c3ebd"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gv8-p3vj-pxvr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would allow limited reads and writes outside of arrays in TFLite. This exploits missing validation in the conversion from sparse tensors to dense tensors. The fix is included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. Users are advised to upgrade as soon as possible.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would allow limited reads and writes outside of arrays in TFLite. This exploits missing validation in the conversion from sparse tensors to dense tensors. The fix is included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. Users are advised to upgrade as soon as possible."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo de TFLite que permita lecturas y escrituras limitadas fuera de las matrices en TFLite. Esto explota una falta de comprobaci\u00f3n en la conversi\u00f3n de tensores dispersos a tensores densos. La correcci\u00f3n es incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido. Se recomienda a usuarios que actualicen lo antes posible"
    }
  ],
  "id": "CVE-2022-23560",
  "lastModified": "2024-11-21T06:48:48.900",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.737",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/kernels/internal/utils/sparsity_format_converter.cc#L252-L293"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6364463d6f5b6254cac3d6aedf999b6a96225038"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4hvf-hxvg-f67v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient` receives input `min` or `max` of rank other than 1, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient\" recibe una entrada \"min\" o \"max\" de rango distinto a 1, da un fallo de \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit f3cf67ac5705f4f04721d15e485e192bb319feed de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35990",
  "lastModified": "2024-11-21T07:12:07.730",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.727",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h7ff-cfc9-wmmh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. An input `token` that is not a UTF-8 bytestring will trigger a `CHECK` fail in `tf.raw_ops.PyFunc`. We have patched the issue in GitHub commit 9f03a9d3bafe902c1e6beb105b2f24172f238645. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. An input `token` that is not a UTF-8 bytestring will trigger a `CHECK` fail in `tf.raw_ops.PyFunc`. We have patched the issue in GitHub commit 9f03a9d3bafe902c1e6beb105b2f24172f238645. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Un `token` de entrada que no sea una cadena de bytes UTF-8 provocar\u00e1 un error de `CHECK` en `tf.raw_ops.PyFunc`. Hemos solucionado el problema en el commit de GitHub 9f03a9d3bafe902c1e6beb105b2f24172f238645. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos el commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41908",
  "lastModified": "2024-11-21T07:24:02.683",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:21.790",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9f03a9d3bafe902c1e6beb105b2f24172f238645"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv77-9g28-cwg3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/lib/core/py_func.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9f03a9d3bafe902c1e6beb105b2f24172f238645"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv77-9g28-cwg3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-12-06 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "471595C4-437A-4DDA-A4CA-91FF1E1CD7A6",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The function MakeGrapplerFunctionItem takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. We have patched the issue in GitHub commit a65411a1d69edfb16b25907ffb8f73556ce36bb7. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.8.4, 2.9.3, and 2.10.1."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. La funci\u00f3n MakeGrapplerFunctionItem toma argumentos que determinan los tama\u00f1os de entradas y salidas. Si las entradas proporcionadas son mayores o iguales que los tama\u00f1os de las salidas, se desencadena una lectura de memoria fuera de los l\u00edmites o un bloqueo. Hemos solucionado el problema en el commit de GitHub a65411a1d69edfb16b25907ffb8f73556ce36bb7. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.8.4, 2.9.3 y 2.10.1."
    }
  ],
  "id": "CVE-2022-41910",
  "lastModified": "2024-11-21T07:24:02.933",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-12-06T22:15:10.587",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-frqp-wp83-qggv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/grappler/utils/functions.cc#L221"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a65411a1d69edfb16b25907ffb8f73556ce36bb7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-frqp-wp83-qggv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-24 17:29
Modified
2024-11-21 03:40
Summary
Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A671E967-1258-4385-AE5F-B77F252E1DE5",
              "versionEndExcluding": "1.7.1",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Invalid memory access and/or a heap buffer overflow in the TensorFlow XLA compiler in Google TensorFlow before 1.7.1 could cause a crash or read from other parts of process memory via a crafted configuration file."
    },
    {
      "lang": "es",
      "value": "El acceso no v\u00e1lido a la memoria y/o un desbordamiento de b\u00fafer en el compilador TensorFlow XLA en Google TensorFlow versiones anteriores a la 1.7.1 podr\u00eda causar un cierre inesperado o leer de otras partes de la memoria de proceso a trav\u00e9s de un archivo de configuraci\u00f3n dise\u00f1ado."
    }
  ],
  "id": "CVE-2018-10055",
  "lastModified": "2024-11-21T03:40:44.057",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-24T17:29:00.270",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-006.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede escribir fuera de l\u00edmites de las matrices asignadas a la pila al pasar argumentos no comprobados a \"tf.raw_ops.Dilation2DBackpropInput\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) no comprueba antes de escribir en una matriz de salida.\u0026#xa0;Se garantiza que los valores de \"h_out\" y \"w_out\" est\u00e1n dentro del rango de \"out_backprop\" (ya que son \u00edndices de bucle limitados por el tama\u00f1o de la matriz).\u0026#xa0;Sin embargo, no presentan garant\u00edas similares relacionadas con \"h_in_max\" /\" w_in_max\" y \"in_backprop\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4"
    }
  ],
  "id": "CVE-2021-29566",
  "lastModified": "2024-11-21T06:01:23.757",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.647",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.SparseDenseCwiseMul`, an attacker can trigger denial of service via `CHECK`-fails or accesses to outside the bounds of heap allocated data. Since the implementation(https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) only validates the rank of the input arguments but no constraints between dimensions(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), an attacker can abuse them to trigger internal `CHECK` assertions (and cause program termination, denial of service) or to write to memory outside of bounds of heap allocated tensor buffers. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Debido a una falta de comprobaci\u00f3n en \"tf.raw_ops.SparseDenseCwiseMul\", un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de fallos de \"CHECK\" o accesos fuera de l\u00edmites de los datos asignados a la pila.\u0026#xa0;Dado que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/38178a2f7a681a7835bb0912702a134bfe3b4d84/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L68-L80) solo comprueba el rango de los argumentos de entrada (pero sin restricciones) //www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseMul), un atacante puede abusar de ellos para activar aserciones internas \"CHECK\" (y causar la terminaci\u00f3n del programa, denegaci\u00f3n de servicio) o para escribir en una memoria fuera de l\u00edmites de b\u00faferes tensoriales asignados a la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0"
    }
  ],
  "id": "CVE-2021-29567",
  "lastModified": "2024-11-21T06:01:23.873",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.697",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7ae2af34087fb4b5c8915279efd03da3b81028bc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wp3c-xw9g-gpcg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat<T>().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a `CHECK` fail in PNG encoding by providing an empty input tensor as the pixel data. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) only validates that the total number of pixels in the image does not overflow. Thus, an attacker can send an empty matrix for encoding. However, if the tensor is empty, then the associated buffer is `nullptr`. Hence, when calling `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), the first argument (i.e., `image.flat\u003cT\u003e().data()`) is `NULL`. This then triggers the `CHECK_NOTNULL` in the first line of `png::WriteImageToBuffer`(https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_io.cc#L345-L349). Since `image` is null, this results in `abort` being called after printing the stacktrace. Effectively, this allows an attacker to mount a denial of service attack. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar \"CHECK\" en una codificaci\u00f3n PNG al proporcionar un tensor de entrada vac\u00edo como datos de p\u00edxeles.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L57-L60) solo comprueba que el n\u00famero total de p\u00edxeles en una imagen no se desborda.\u0026#xa0;Por lo tanto, un atacante puede enviar una matriz vac\u00eda para codificar.\u0026#xa0;Sin embargo, si el tensor est\u00e1 vac\u00edo, entonces el b\u00fafer asociado es \"nullptr\".\u0026#xa0;Por lo tanto, al llamar a la funci\u00f3n \"png::WriteImageToBuffer\" (https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/kernels/image/encode_png_op.cc#L79-L93), el primer argumento (es decir, \"image.flat (T) () .data ()\") es \"NULL\".\u0026#xa0;Esto luego desencadena el \"CHECK_NOTNULL\" en una primera l\u00ednea de la funci\u00f3n \"png::WriteImageToBuffer\" (https://github.com/tensorflow/tensorflow/blob/e312e0791ce486a80c9d23110841525c6f7c3289/tensorflow/core/lib/png/png_45-Lcc349L).\u0026#xa0;Dado que \"image\" es null, esto resulta en que se llame a \"abort\" despu\u00e9s de imprimir el stacktrace.\u0026#xa0;Efectivamente, esto permite a un atacante montar un ataque de denegaci\u00f3n de servicio.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29531",
  "lastModified": "2024-11-21T06:01:19.327",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.027",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/26eb323554ffccd173e8a79a8c05c15b685ae4d1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qxp-qjq7-w4hf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. Inputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in `SdcaOptimizer`. We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Inputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in `SdcaOptimizer`. We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Las entradas `dense_features` o `example_state_data` que no sean de rango 2 provocar\u00e1n un error de `CHECK` en `SdcaOptimizer`. Hemos solucionado el problema en el commit de GitHub 80ff197d03db2a70c6a111f97dcdacad1b0babfa. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41899",
  "lastModified": "2024-11-21T07:24:01.450",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:19.817",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can access data outside of bounds of heap allocated array in `tf.raw_ops.UnicodeEncode`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) assumes that the `input_value`/`input_splits` pair specify a valid sparse tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede acceder a datos fuera de l\u00edmites de la matriz asignada a la pila en \"tf.raw_ops.UnicodeEncode\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/472c1f12ad9063405737679d4f6bd43094e1d36d/tensorflow/core/kernels/unicode_ops.cc) asume que el par \"input_value\"/\"input_splits\" especifica un tensor disperso v\u00e1lido.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29559",
  "lastModified": "2024-11-21T06:01:22.890",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.333",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/51300ba1cc2f487aefec6e6631fef03b0e08b298"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-59q2-x2qc-4c97"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `EmbeddingLookup` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74). An attacker can craft a model such that the first dimension of the `value` input is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador TFLite \"EmbeddingLookup\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/e4b29809543b250bc9b19678ec4776299dd569ba/tensorflow/lite/kernels/embedding_lookup.cc#L73-L74).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo de modo que la primera dimensi\u00f3n de la entrada de \"value\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29596",
  "lastModified": "2024-11-21T06:01:27.453",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.257",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f61c57bd425878be108ec787f4d96390579fb83e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4vrf-ff7v-hpgr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"LowerBound\" o \"UpperBound\" reciben una entrada \"sorted_inputs\" vac\u00eda, es producido una desreferencia de \"nullptr\", conllevando a un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit bce3717eaef4f769019fd18e990464ca4a2efeea de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35965",
  "lastModified": "2024-11-21T07:12:04.060",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:08.967",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, by controlling the `fill` argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed. This may result in segmentation fault. The issue is patched in commit 33be22c65d86256e6826666662e40dbdfe70ee83, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, by controlling the `fill` argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed. This may result in segmentation fault. The issue is patched in commit 33be22c65d86256e6826666662e40dbdfe70ee83, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, al controlar el argumento \"fill\" de tf.strings.as_string, un atacante malicioso puede desencadenar una vulnerabilidad de cadena de formato debido a la manera en que se construye el uso del formato interno en una llamada de \"printf\".\u0026#xa0;Esto puede resultar en un fallo de segmentaci\u00f3n.\u0026#xa0;El problema es parcheado en el commit 33be22c65d86256e6826666662e40dbdfe70ee83 y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15203",
  "lastModified": "2024-11-21T05:05:04.620",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.620",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-134"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, es posible anidar un \"tf.map_fn\" dentro de otra llamada \"tf.map_fn\".\u0026#xa0;Sin embargo, si el tensor de entrada es un \"RaggedTensor\" y no se proporciona una firma de funci\u00f3n, el c\u00f3digo asume que la salida es un tensor completamente especificado y llena el b\u00fafer de salida con contenido no inicializado de la pila.\u0026#xa0;Las salidas \"t\" y\" z\" deben ser id\u00e9nticas, sin embargo, este no es el caso.\u0026#xa0;La \u00faltima fila de \"t\" contiene datos de la pila que se pueden usar para filtrar otra informaci\u00f3n de la memoria.\u0026#xa0;El error radica en la conversi\u00f3n de un tensor \"Variant\" a un\" RaggedTensor\".\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.\u0026#xa0;cc # L177-L190) no comprueba que todas las formas internas coincidan y esto da como resultado las dimensiones adicionales.\u0026#xa0;La misma implementaci\u00f3n puede resultar en la p\u00e9rdida de datos, si se modifica el tensor de entrada.\u0026#xa0;Hemos solucionado el problema en GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37679",
  "lastModified": "2024-11-21T06:15:41.070",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.287",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4e2565483d0ffcadc719bd44893fb7f609bb5f12"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g8wg-cjwc-xhhp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx->session_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In eager mode (default in TF 2.0 and later), session operations are invalid. However, users could still call the raw ops associated with them and trigger a null pointer dereference. The implementation(https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) dereferences the session state pointer without checking if it is valid. Thus, in eager mode, `ctx-\u003esession_state()` is nullptr and the call of the member function is undefined behavior. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En el modo eager (predeterminado en TF versiones 2.0 y posteriores), las operaciones de sesi\u00f3n no son v\u00e1lidas.\u0026#xa0;Sin embargo, los usuarios a\u00fan pueden llamar a las operaciones sin procesar asociadas con ellos y activar una desreferencia de puntero null.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/eebb96c2830d48597d055d247c0e9aebaea94cd5/tensorflow/core/kernels/session_ops.cc#L104) elimina las referencias al puntero de estado de la sesi\u00f3n sin comprobar si es v\u00e1lido.\u0026#xa0;Por lo tanto, en modo eager, \"ctx-)session_state()\" es nullptr y la llamada de la funci\u00f3n miembro es un comportamiento indefinido.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29518",
  "lastModified": "2024-11-21T06:01:17.733",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.437",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff70c47a396ef1e3cb73c90513da4f5cb71bebba"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-62gx-355r-9fhg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un fallo secundario y una denegaci\u00f3n de servicio por medio del acceso a datos fuera de l\u00edmites en \"tf.raw_ops.QuantizedBatchNormWithGlobalNormalization\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) asume que las entradas no est\u00e1n vac\u00edas.\u0026#xa0;Si alguna de estas entradas est\u00e1 vac\u00eda, \".flat(T)()\" es un b\u00fafer vac\u00edo, por lo que acceder al elemento en el \u00edndice 0 es acceder a datos fuera de l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29547",
  "lastModified": "2024-11-21T06:01:21.313",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.763",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read is triggered. This issue has been patched in GitHub commit 595a65a3e224a0362d7e68c2213acfc2b499a196. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read is triggered. This issue has been patched in GitHub commit 595a65a3e224a0362d7e68c2213acfc2b499a196. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"GatherNd\" toma argumentos que determinan el tama\u00f1o de las entradas y salidas. Si las entradas dadas son mayores o iguales a los tama\u00f1os de las salidas, se desencadena una lectura de memoria fuera de l\u00edmites. Este problema ha sido corregido en el commit 595a65a3e224a0362d7e68c2213acfc2b499a196 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35937",
  "lastModified": "2024-11-21T07:12:00.250",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.0,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.110",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f463040eb3997e42e60a2ffc6dc72de7ef11dbb4/tensorflow/lite/kernels/gather_nd.cc#L105-L111"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/595a65a3e224a0362d7e68c2213acfc2b499a196"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pxrw-j2fv-hx3h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `tf.raw_ops.RaggedTensorToTensor`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) uses the same index to access two arrays in parallel. Since the user controls the shape of the input arguments, an attacker could trigger a heap OOB access when `parent_output_index` is shorter than `row_split`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de pila en \"tf.raw_ops.RaggedTensorToTensor\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/d94227d43aa125ad8b54115c03cece54f6a1977b/tensorflow/core/kernels/ragged_tensor_to_tensor_op.cc#L219-L222) usa el mismo \u00edndice para acceder a dos matrices en paralelo.\u0026#xa0;Dado que el usuario controla la forma de los argumentos de entrada, un atacante podr\u00eda desencadenar un acceso OOB a la pila cuando \"parent_output_index\" es m\u00e1s corto que \"row_split\".\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29560",
  "lastModified": "2024-11-21T06:01:23.020",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.380",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a84358aa12f0b1518e606095ab9cfddbf597c121"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8gv3-57p6-g35r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedMul`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede activar una divisi\u00f3n por 0 en \"tf.raw_ops.QuantizedMul\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/55900e961ed4a23b438392024912154a2c2f5e85/tensorflow/core/kernels/quantized_mul_op.cc#L188-L198) hace una divisi\u00f3n por una cantidad que es controlada por la persona que llama.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29528",
  "lastModified": "2024-11-21T06:01:18.960",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.893",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a1b11d2fdd1e51bfe18bb1ede804f60abfa92da6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f84-42vf-ppwp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.IRFFT`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio al explotar una fallo \"CHECK\" proveniente de la implementaci\u00f3n de \"tf.raw_ops.IRFFT\".\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29562",
  "lastModified": "2024-11-21T06:01:23.263",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.467",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1c56f53be0b722ca657cbc7df461ed676c8642a2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-36vm-xw34-x4pj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. If a numpy array is created with a shape such that one element is zero and the others sum to a large number, an error will be raised. We have patched the issue in GitHub commit 2b56169c16e375c521a3bc8ea658811cc0793784. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If a numpy array is created with a shape such that one element is zero and the others sum to a large number, an error will be raised. We have patched the issue in GitHub commit 2b56169c16e375c521a3bc8ea658811cc0793784. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si se crea un array numpy con una forma tal que un elemento es cero y los dem\u00e1s suman un n\u00famero grande, se generar\u00e1 un error. Hemos solucionado el problema en el commit de GitHub 2b56169c16e375c521a3bc8ea658811cc0793784. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41884",
  "lastModified": "2024-11-21T07:23:59.267",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:13.573",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2b56169c16e375c521a3bc8ea658811cc0793784"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jq6x-99hj-q636"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2b56169c16e375c521a3bc8ea658811cc0793784"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jq6x-99hj-q636"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-670"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas la implementaci\u00f3n de \"SplitV\" puede desencadenar un segfault si un atacante suministra argumentos negativos. Esto ocurre cuando \"size_splits\" contiene m\u00e1s de un valor y al menos uno de ellos es negativo. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41222",
  "lastModified": "2024-11-21T06:25:48.990",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.477",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/25d622ffc432acc736b14ca3904177579e733cc6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cpf4-wx82-gxp6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-682"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "7A5421A9-693F-472A-9A21-43950C884C77",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "B0FEB74E-5E54-4A2F-910C-FA1812C73DB2",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "47D83682-6615-49BC-8043-F36B9D017578",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, a crafted TFLite model can force a node to have as input a tensor backed by a `nullptr` buffer. This can be achieved by changing a buffer index in the flatbuffer serialization to convert a read-only tensor to a read-write one. The runtime assumes that these buffers are written to before a possible read, hence they are initialized with `nullptr`. However, by changing the buffer index for a tensor and implicitly converting that tensor to be a read-write one, as there is nothing in the model that writes to it, we get a null pointer dereference. The issue is patched in commit 0b5662bc, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En tensorflow-lite versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, un modelo TFLite dise\u00f1ado puede forzar a un nodo a tener como entrada un tensor respaldado por un b\u00fafer de \"nullptr\".\u0026#xa0;Esto se puede lograr cambiando un \u00edndice de b\u00fafer en la serializaci\u00f3n flatbuffer para convertir un tensor de solo lectura en uno de lectura y escritura.\u0026#xa0;El tiempo de ejecuci\u00f3n asume que estos b\u00faferes son escritos antes de una posible lectura, por lo que son inicializados con \"nullptr\".\u0026#xa0;Sin embargo, al cambiar el \u00edndice del b\u00fafer por un tensor y convertir impl\u00edcitamente ese tensor en uno de lectura y escritura, ya que no existe nada en el modelo que escriba en \u00e9l, obtenemos una desreferencia del puntero null.\u0026#xa0;El problema es parcheado en el commit 0b5662bc y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15209",
  "lastModified": "2024-11-21T05:05:05.573",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.213",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0b5662bc2be13a8c8f044d925d87fb6e56247cd8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qh32-6jjc-qprm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `StringNGrams` can be used to trigger a denial of service attack by causing an out of memory condition after an integer overflow. We are missing a validation on `pad_witdh` and that result in computing a negative value for `ngram_width` which is later used to allocate parts of the output. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"StringNGrams\" puede ser usada para desencadenar un ataque de denegaci\u00f3n de servicio causando una condici\u00f3n de fuera de memoria tras un desbordamiento de enteros. Falta una comprobaci\u00f3n en \"pad_witdh\" y eso hace que sea computado un valor negativo para \"ngram_width\" que luego es usada para asignar partes de la salida. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21733",
  "lastModified": "2025-05-05T17:17:49.567",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:07.993",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/string_ngrams_op.cc#L29-L161"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f68fdab93fb7f4ddb4eb438c8fe052753c9413e8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-98j8-c9q4-r38g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` is vulnerable to a division by 0. The implementation(https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.cc#L1033-L1034) fails to validate that the batch dimension of the tensor is non-zero, before dividing by this quantity. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPoolGradWithArgmax\" es vulnerable a una divisi\u00f3n por 0. La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/279bab6efa22752a2827621b7edb56a730233bd8/tensorflow/core/kernels/maxpooling_op.op. ) no comprueba que la dimensi\u00f3n del lote del tensor no sea cero, antes de dividir por esta cantidad.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29573",
  "lastModified": "2024-11-21T06:01:24.603",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.970",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/376c352a37ce5a68b721406dc7e77ac4b6cf483d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vpm-rcf4-9wqw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `SparseSparseMaximum` is given invalid sparse tensors as inputs, it can give a null pointer error. A fix is included in TensorFlow version 2.12 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `SparseSparseMaximum` is given invalid sparse tensors as inputs, it can give a null pointer error. A fix is included in TensorFlow version 2.12 and version 2.11.1."
    }
  ],
  "id": "CVE-2023-25665",
  "lastModified": "2024-11-21T07:49:54.100",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.427",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5e0ecfb42f5f65629fd7a4edd6c4afe7ff0feb04"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-558h-mq8x-7q9g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.FractionalAvgPool`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) computes a divisor quantity by dividing two user controlled values. The user controls the values of `input_size[i]` and `pooling_ratio_[i]` (via the `value.shape()` and `pooling_ratio` arguments). If the value in `input_size[i]` is smaller than the `pooling_ratio_[i]`, then the floor operation results in `output_size[i]` being 0. The `DCHECK_GT` line is a no-op outside of debug mode, so in released versions of TF this does not trigger. Later, these computed values are used as arguments(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) to `GeneratePoolingSequence`(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). There, the first computation is a division in a modulo operation. Since `output_length` can be 0, this results in runtime crashing. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Un atacante puede causar un error de divisi\u00f3n por cero en tiempo de ejecuci\u00f3n y una denegaci\u00f3n de servicio en \"tf.raw_ops.FractionalAvgPool\". Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L85-L89) calcula una cantidad divisora al dividir dos valores controlados por el usuario. El usuario controla los valores de \"input_size[i]\" y \"pooling_ratio_[i]\" (por medio de los argumentos \"value.shape()\" y \"pooling_ratio\"). Si el valor en \"input_size[i]\" es menor que el \"pooling_ratio_[i]\", entonces la operaci\u00f3n floor resulta en que \"output_size[i]\" sea 0. La l\u00ednea \"DCHECK_GT\" es un no-op fuera del modo de depuraci\u00f3n, as\u00ed que en las versiones liberadas de TF  no es desencadenado. M\u00e1s tarde, estos valores calculados son usados como argumentos (https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_avg_pool_op.cc#L96-L99) para \"GeneratePoolingSequence\"(https://github.com/tensorflow/tensorflow/blob/acc8ee69f5f46f92a3f1f11230f49c6ac266f10c/tensorflow/core/kernels/fractional_pool_common.cc#L100-L108). All\u00ed, el primer c\u00e1lculo es una divisi\u00f3n en una operaci\u00f3n de m\u00f3dulo. Dado que \"output_length\" puede ser 0, esto resulta en un bloqueo en tiempo de ejecuci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y siguen siendo compatibles"
    }
  ],
  "id": "CVE-2021-29550",
  "lastModified": "2024-11-21T06:01:21.693",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.897",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/548b5eaf23685d86f722233d8fbc21d0a4aecb96"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f78g-q7r4-9wcv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, an out of bounds read is in GRUBlockCellGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, an out of bounds read is in GRUBlockCellGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25658",
  "lastModified": "2024-11-21T07:49:53.210",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.077",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff459137c2716a2a60f7d441b855fcb466d778cb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-68v3-g9cm-rmm6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:53
Summary
TensorFlow is an end-to-end open source platform for machine learning. Constructing a tflite model with a paramater `filter_input_channel` of less than 1 gives a FPE. This issue has been patched in version 2.12. TensorFlow will also cherrypick the fix commit on TensorFlow 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Constructing a tflite model with a paramater `filter_input_channel` of less than 1 gives a FPE. This issue has been patched in version 2.12. TensorFlow will also cherrypick the fix commit on TensorFlow 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-27579",
  "lastModified": "2024-11-21T07:53:11.340",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:08.183",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/34f8368c535253f5c9cb3a303297743b62442aaa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5w96-866f-6rm8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-697"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) fails to validate that indices used to access elements of input/output arrays are valid. Whereas accesses to `input_backprop_flat` are guarded by `FastBoundsCheck`, the indexing in `out_backprop_flat` can result in OOB access. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPoolGrad\" es vulnerable a un desbordamiento del b\u00fafer de la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ab1e644b48c82cb71493f4362b4dd38f4577a1cf/tensorflow/core/kernels/maxpooling_op.cc#L194-L203) no comprueba que los \u00edndices usados para acceder a elementos de matrices de entrada y salida sean v\u00e1lidos.\u0026#xa0;Mientras que los accesos a `input_backprop_flat` est\u00e1n protegidos por `FastBoundsCheck`, la indexaci\u00f3n en \"out_backprop_flat\" puede resultar en acceso OOB.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29579",
  "lastModified": "2024-11-21T06:01:25.327",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.247",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-79fv-9865-4qcv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `Conv2D` is given empty `input` and the `filter` and `padding` sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `Conv2D` is given empty `input` and the `filter` and `padding` sizes are valid, the output is all-zeros. This causes division-by-zero floating point exceptions that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"Conv2D\" recibe una \"entrada\" vac\u00eda y los tama\u00f1os de \"filtro\" y \"acolchado\" son v\u00e1lidos, la salida es todo ceros. Esto causa excepciones de divisi\u00f3n por cero en coma flotante que pueden ser usadas para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 611d80db29dd7b0cfb755772c69d60ae5bca05f9 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35996",
  "lastModified": "2024-11-21T07:12:08.593",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.407",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/611d80db29dd7b0cfb755772c69d60ae5bca05f9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q5jv-m6qw-5g37"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529jExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529jExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LoadAndRemapMatrix does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `initializing_values` is a vector but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.LoadAndRemapMatrix\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo asume que \"initializing_values\" es un vector pero no es comprobado antes de acceder a su valor. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29199",
  "lastModified": "2024-11-21T06:58:41.787",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.870",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/load_and_remap_matrix_op.cc#L70-L98"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3150642acbbe254e3c3c5d2232143fa591855ac9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p9rc-rmr5-529j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite\u0027s [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, la [implementaci\u00f3n de \"GatherNd\"] de TFLite (https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) no admite \u00edndices negativos pero no hay comprobaciones de esta situaci\u00f3n.\u0026#xa0;Por lo tanto, un atacante puede leer datos arbitrarios de la pila al dise\u00f1ar cuidadosamente un modelo con valores negativos en \"\u00edndices\".\u0026#xa0;Se presenta un problema similar en la [implementaci\u00f3n de \"Gather\"] (https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc).\u0026#xa0;Hemos solucionado el problema en las commits de GitHub bb6a0383ed553c286f87ca88c207f6774d5c4a8f y eb921122119a6b6e470ee98b89e65d721663179d.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0."
    }
  ],
  "id": "CVE-2021-37687",
  "lastModified": "2024-11-21T06:15:42.240",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.773",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bb6a0383ed553c286f87ca88c207f6774d5c4a8f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eb921122119a6b6e470ee98b89e65d721663179d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jwf9-w5xm-f437"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede desencadenar una lectura desde fuera de l\u00edmites de los datos asignados a la pila mediante el env\u00edo de argumentos no v\u00e1lidos a \"tf.raw_ops.ResourceScatterUpdate\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) presenta una comprobaci\u00f3n incompleta de la relaci\u00f3n entre las formas de \"\u00edndices\" y \"updates\": en lugar de comprobar que la forma de \"\u00edndices\" es un prefijo de la forma de \"updates\" (para que pueda producirse la difusi\u00f3n), el c\u00f3digo s\u00f3lo comprueba que el n\u00famero de elementos de estos dos tensores est\u00e1 en una relaci\u00f3n de divisibilidad. Hemos parcheado el problema en el commit de GitHub 01cff3f986259d661103412a20745928c727326f. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37655",
  "lastModified": "2024-11-21T06:15:37.503",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.367",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/01cff3f986259d661103412a20745928c727326f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7fvx-3jfc-2cpc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede desencadenar un bloqueo por medio de un par\u00e1metro \"CHECK\" en las versiones de depuraci\u00f3n de TensorFlow usando \"tf.raw_ops.ResourceGather\" o una lectura desde fuera de l\u00edmites de los datos asignados a la pila en la misma API en una versi\u00f3n de lanzamiento. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) no comprueba que el valor de \"batch_dims\" que el usuario proporciona es menor que el rango del tensor de entrada. Dado que la implementaci\u00f3n usa varios bucles for sobre las dimensiones de \"tensor\", esto resulta en la lectura de datos desde fuera de l\u00edmites del b\u00fafer asignado en el heap que respalda el tensor. Hemos parcheado el problema en el commit bc9c546ce7015c57c2f15c168b3d9201de679a1d de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.5.1, TensorFlow 2.4.3 y TensorFlow 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37654",
  "lastModified": "2024-11-21T06:15:37.350",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.267",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bc9c546ce7015c57c2f15c168b3d9201de679a1d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r8p-fg3c-wcj4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en todas las operaciones de tipo \"tf.raw_ops.MatrixDiagV*\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) presenta una comprobaci\u00f3n incompleta de que el valor de \"k\" es un tensor v\u00e1lido. Hemos comprobado que este valor es un escalar o un vector, pero no hay ninguna comprobaci\u00f3n del n\u00famero de elementos. Si se trata de un tensor vac\u00edo, el c\u00f3digo que accede al primer elemento del tensor es err\u00f3neo. Hemos parcheado el problema en el commit f2a673bd34f0d64b8e40a551ac78989d16daad09 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37657",
  "lastModified": "2024-11-21T06:15:37.790",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.567",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2a673bd34f0d64b8e40a551ac78989d16daad09"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5xwc-mrhx-5g3m"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 19:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices-\u003edim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. Cuando un usuario no suministra argumentos que determinen un tensor disperso v\u00e1lido, la implementaci\u00f3n \"tf.raw_ops.SparseTensorSliceDataset\" puede hacerse para derivar un puntero null. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) presenta alguna comprobaci\u00f3n de argumentos, pero no considera el caso en el que o bien \"indices\" o bien \"values\" se proporcionan para un tensor disperso vac\u00edo cuando el otro no lo est\u00e1. Si \"indices\" est\u00e1 vac\u00edo, entonces [c\u00f3digo que lleva a cabo la comprobaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (es decir, la comprobaci\u00f3n de que los \u00edndices son monot\u00f3nicamente crecientes) resulta en una desreferencia de puntero null. Si \"indices\" tal y como lo proporciona el usuario est\u00e1 vac\u00edo, entonces \"indices\" en el c\u00f3digo C++ anterior est\u00e1 respaldado por un \"std::vector\u0027 vac\u00edo, por lo que llamar a \"indices-)dim_size(0)\" resulta en una desreferencia de puntero null (igual que llamar a \"std::vector::at()\" en un vector vac\u00edo). Hemos parcheado el problema en el commit de GitHub 02cc160e29d20631de3859c6653184e3f876b9d7. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37647",
  "lastModified": "2024-11-21T06:15:36.170",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.7,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T19:15:08.963",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c6653184e3f876b9d7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"QuantizedMatMul\" recibe una entrada no escalar para: \"min_a\", \"max_a\", \"min_b\", o \"max_b\" resulta en un segfault que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit de GitHub aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35973",
  "lastModified": "2024-11-21T07:12:05.223",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.490",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 23:15
Modified
2024-11-21 05:19
Summary
In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CA3A54AC-E0F8-4741-8A80-04EEF746B14B",
              "versionEndExcluding": "1.15.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "989E4548-7823-436F-A9FE-04158ED41C48",
              "versionEndExcluding": "2.0.4",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "46417CA8-E666-4E12-B2A8-BB0E97D49BF4",
              "versionEndExcluding": "2.1.3",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "57B24744-0D81-41E9-9ED0-7296368DEF00",
              "versionEndExcluding": "2.2.2",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "DBEA56AF-3495-4883-9721-0FA9F08E7F6D",
              "versionEndExcluding": "2.3.2",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In affected versions of TensorFlow the tf.raw_ops.DataFormatVecPermute API does not validate the src_format and dst_format attributes. The code assumes that these two arguments define a permutation of NHWC. This can result in uninitialized memory accesses, read outside of bounds and even crashes. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
    },
    {
      "lang": "es",
      "value": "En las versiones afectadas de TensorFlow, la API tf.raw_ops.DataFormatVecPermute no comprueba los atributos src_format y dst_format.\u0026#xa0;El c\u00f3digo asume que estos dos argumentos definen una permutaci\u00f3n de NHWC.\u0026#xa0;Esto puede resultar en accesos de memoria no inicializados, lectura fuera de l\u00edmites e incluso fallos.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0."
    }
  ],
  "id": "CVE-2020-26267",
  "lastModified": "2024-11-21T05:19:42.457",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.1,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T23:15:12.723",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ebc70b7a592420d3d2f359e4b1694c236b82c7ae"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c9f3-9wfr-wgh7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"QuantizeDownAndShrinkRange\" recibe entradas no escalares para \"input_min\" o \"input_max\", resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35974",
  "lastModified": "2024-11-21T07:12:05.363",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.550",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.ccThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.ccThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.QuantizedConv2D` does not fully validate the input arguments. In this case, references get bound to `nullptr` for each argument that is empty. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.QuantizedConv2D\" no comprobaba completamente los argumentos de entrada. En este caso, las referencias se vinculan a \"nullptr\" para cada argumento que est\u00e9 vac\u00edo. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29201",
  "lastModified": "2024-11-21T06:58:42.103",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.390",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantized_conv_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0f0b080ecde4d3dfec158d6f60da34d5e31693c4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pqhm-4wvf-2jg8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-Other"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully. Since the constructor(https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPool3DGradGrad\" es vulnerable a un desbordamiento del b\u00fafer de la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) no comprueba que la inicializaci\u00f3n de \"Pool3dParameters\" se complete apropiadamente.\u0026#xa0;Dado que el constructor (https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) usa \"OP_REQUIRES\" para comprobar las condiciones iniciales, la primera de \"params\", haciendo que contenga datos no comprobados.\u0026#xa0;A su vez, esto podr\u00eda causar un desbordamiento del b\u00fafer de pila, seg\u00fan los valores inicializados predeterminados.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29576",
  "lastModified": "2024-11-21T06:01:24.960",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.107",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow can trigger a null pointer dereference. There are 2 places where this can occur, for the same malicious alteration of a `SavedModel` file (fixing the first one would trigger the same dereference in the second place). First, during constant folding, the `GraphDef` might not have the required nodes for the binary operation. If a node is missing, the correposning `mul_*child` would be null, and the dereference in the subsequent line would be incorrect. We have a similar issue during `IsIdentityConsumingSwitch`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bfPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqpPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bfPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqpPatch, Third Party Advisory
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow can trigger a null pointer dereference. There are 2 places where this can occur, for the same malicious alteration of a `SavedModel` file (fixing the first one would trigger the same dereference in the second place). First, during constant folding, the `GraphDef` might not have the required nodes for the binary operation. If a node is missing, the correposning `mul_*child` would be null, and the dereference in the subsequent line would be incorrect. We have a similar issue during `IsIdentityConsumingSwitch`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Bajo determinados escenarios, el componente Grappler de TensorFlow puede desencadenar una desreferencia de puntero null. Se presentan 2 lugares donde esto puede ocurrir, para la misma alteraci\u00f3n maliciosa de un archivo \"SavedModel\" (arreglar el primero desencadenar\u00eda la misma desreferencia en el segundo lugar). Primero, durante el plegado constante, el \"GraphDef\" podr\u00eda no tener los nodos necesarios para la operaci\u00f3n binaria. Si falta un nodo, el \"mul_*child\" correspondiente ser\u00eda nulo, y la desreferencia en la l\u00ednea posterior ser\u00eda incorrecta. Tenemos un problema similar durante \"IsIdentityConsumingSwitch\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23589",
  "lastModified": "2024-11-21T06:48:52.717",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.147",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/mutable_graph_view.cc#L59-L74"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L3466-L3497"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/045deec1cbdebb27d817008ad5df94d96a08b1bf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0a365c029e437be0349c31f8d4c9926b69fa3fa1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9px9-73fg-3fqp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthToSpace` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69). An attacker can craft a model such that `params->block_size` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `DepthToSpace` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc#L63-L69). An attacker can craft a model such that `params-\u003eblock_size` is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador \"DepthToSpace\" TFLite es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/depth_to_space.cc )#L63-.\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que \"params-)block_size\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29595",
  "lastModified": "2024-11-21T06:01:27.327",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.207",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/106d8f4fb89335a2c52d7c895b7a7485465ca8d9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vf94-36g5-69v8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas la operaci\u00f3n \"ImmutableConst\" en TensorFlow puede ser enga\u00f1ada para leer contenidos de memoria arbitrarios. Esto es debido a que la clase de cadena \"tstring\" de TensorFlow presenta un caso especial para cadenas mapeadas en memoria, pero la operaci\u00f3n en s\u00ed no ofrece ning\u00fan soporte para este tipo de datos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41227",
  "lastModified": "2024-11-21T06:25:49.807",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 6.6,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1cb6bb6c2a6019417c9adaf9e6843ba75ee2580b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3712a2d3455e6ccb924daa5724a3652a86f6b585"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8c8-67vp-6mx7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPoolGradWithArgmax\" puede causar una lectura fuera de l\u00edmites de los datos asignados a la pila si el atacante suministra entradas especialmente dise\u00f1adas.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) asume que los tensores \"input_min\" y\" input_max\" tienen al menos un elemento, a medida que accede al primer elemento en dos matrices.\u0026#xa0;Si los tensores est\u00e1n vac\u00edos, \".flat (T) ()\" es un objeto vac\u00edo, respaldado por una matriz vac\u00eda.\u0026#xa0;Por lo tanto, acceder incluso al elemento 0 es una lectura fuera de l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4"
    }
  ],
  "id": "CVE-2021-29569",
  "lastModified": "2024-11-21T06:01:24.117",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.790",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The API of `tf.raw_ops.SparseCross` allows combinations which would result in a `CHECK`-failure and denial of service. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) is tricked to consider a tensor of type `tstring` which in fact contains integral elements. Fixing the type confusion by preventing mixing `DT_STRING` and `DT_INT64` types solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La API de la funci\u00f3n  \"tf.raw_ops.SparseCross\" permite combinaciones que resultar\u00edan en un fallo \"CHECK\" y una denegaci\u00f3n de servicio.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/3d782b7d47b1bf2ed32bd4a246d6d6cadc4c903d/tensorflow/core/kernels/sparse_cross_op.cc#L114-L116) est\u00e1 enga\u00f1ada para considerar un tensor de tipo \"tstring\" contiene elementos integrales.\u0026#xa0;Arreglar la confusi\u00f3n de tipos al impedir la mezcla de los tipos \"DT_STRING\" y\" DT_INT64\" resuelve este problema.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29519",
  "lastModified": "2024-11-21T06:01:17.850",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.480",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b1cc5e5a50e7cee09f2c6eb48eb40ee9c4125025"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772j-h9xw-ffp5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 21:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.DeleteSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2Exploit, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "113B5FC0-ED39-4134-9722-A163B673E3EF",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.DeleteSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.DeleteSessionTensor\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29194",
  "lastModified": "2024-11-21T06:58:41.090",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T21:15:10.530",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L128-L144"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cff267650c6a1b266e4b4500f69fbc49cdd773c5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h5g4-ppwx-48q2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap<T>` (i.e., `std::vector<absl::flat_hash_map<int64,T>>`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Especificar una forma densa negativa en \"tf.raw_ops.SparseCountSparseOutput\" resulta en un error de segmentaci\u00f3n que es eliminado de la biblioteca est\u00e1ndar ya que los invariantes \"std::vector\" son rotos.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) asume que el primer elemento de la forma densa es siempre positivo y lo usa para inicializar un \"BatchedMap(T)\" (es decir, \"std::vector (absl::flat_hash_map(int64, T))\" (https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) estructura de datos.\u0026#xa0;Si el tensor de \"shape\" presenta m\u00e1s de un elemento,\"num_batches\" es el primer valor en \"shape\".\u0026#xa0;Asegurarse de que el argumento \"dense_shape\" sea una forma de tensor v\u00e1lida (es decir, que todos los elementos no sean negativos) resuelve este problema.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2 y TensorFlow versi\u00f3n 2.3.3"
    }
  ],
  "id": "CVE-2021-29521",
  "lastModified": "2024-11-21T06:01:18.080",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.567",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, TensorFlow's `saved_model_cli` tool is vulnerable to a code injection. This can be used to open a reverse shell. This code path was maintained for compatibility reasons as the maintainers had several test cases where numpy expressions were used as arguments. However, given that the tool is always run manually, the impact of this is still not severe. The maintainers have now removed the `safe=False` argument, so all parsing is done without calling `eval`. The patch is available in versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cacPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mcExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cacPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mcExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, TensorFlow\u0027s `saved_model_cli` tool is vulnerable to a code injection. This can be used to open a reverse shell. This code path was maintained for compatibility reasons as the maintainers had several test cases where numpy expressions were used as arguments. However, given that the tool is always run manually, the impact of this is still not severe. The maintainers have now removed the `safe=False` argument, so all parsing is done without calling `eval`. The patch is available in versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la herramienta \"saved_model_cli\" de TensorFlow es vulnerable a una inyecci\u00f3n de c\u00f3digo. Esto puede ser usado para abrir un shell inverso. Esta ruta de c\u00f3digo fue mantenida por razones de compatibilidad, ya que los mantenedores ten\u00edan varios casos de prueba en los que eran usadas expresiones numpy como argumentos. Sin embargo, dado que la herramienta siempre es ejecutada manualmente, el impacto de esto no es grave. Los mantenedores han eliminado el argumento \"safe=False\", por lo que todo el an\u00e1lisis sea realizado sin llamar a \"eval\". El parche est\u00e1 disponible en las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4"
    }
  ],
  "id": "CVE-2022-29216",
  "lastModified": "2024-11-21T06:58:44.327",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.980",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/python/tools/saved_model_cli.py#L566-L574"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b202f08d52e8206af2bdb2112a62fafbc546ec7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5da7af048611aa29e9382371f0aed5018516cac"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75c9-jrh4-79mc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-94"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params->rank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `SVDF` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102). An attacker can craft a model such that `params-\u003erank` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador TFLite \"SVDF\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/7f283ff806b2031f407db64c4d3edcda8fb9f9f5/tensorflow/lite/kernels/svdf.cc#L99-L102).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que \"params-)rank\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29598",
  "lastModified": "2024-11-21T06:01:27.733",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.353",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6841e522a3e7d48706a02e8819836e809f738682"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pmpr-55fj-r229"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "C3684238-B1B8-4134-9FED-8A3733E1F39B",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "08DF9052-55EF-4B54-94C6-EC9B4FC87DE1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of `FractionalAvgPoolGrad` does not fully validate the input `orig_input_tensor_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 03a659d7be9a1154fdf5eeac221e5950fec07dad. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de \"FractionalAvgPoolGrad\" no comprueba completamente la entrada \"orig_input_tensor_shape\". Esto resulta en un desbordamiento que resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 03a659d7be9a1154fdf5eeac221e5950fec07dad de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35963",
  "lastModified": "2024-11-21T07:12:03.787",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.640",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/03a659d7be9a1154fdf5eeac221e5950fec07dad"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-84jm-4cf3-9jfm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in MKL implementation of requantization, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) does not validate the dimensions of the `input` tensor. A similar issue occurs in `MklRequantizePerChannelOp`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) does not perform full validation for all the input arguments. We have patched the issue in GitHub commit 9e62869465573cb2d9b5053f1fa02a81fce21d69 and in the Github commit 203214568f5bc237603dbab6e1fd389f1572f5c9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas debido a una comprobaci\u00f3n incompleta en la implementaci\u00f3n de recantizaci\u00f3n de MKL, un atacante puede desencadenar un comportamiento indefinido vinculando una referencia a un puntero null o puede acceder a datos fuera de l\u00edmites de las matrices asignadas a la pila.\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantization_range_per_channel_op.cc) no comprueba las dimensiones del tensor \"input\".\u0026#xa0;Un problema similar ocurre en \"MklRequantizePerChannelOp\".\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/mkl/mkl_requantize_per_channel_op.cc) no lleva a cabo una comprobaci\u00f3n completa para todos los argumentos de entrada.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub 9e62869465573cb2d9b5053f1fa02a81fce21d69 y en el commit de Github 203214568f5bc237603dbab6e1fd389f1572f5c9.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37665",
  "lastModified": "2024-11-21T06:15:38.997",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.333",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/203214568f5bc237603dbab6e1fd389f1572f5c9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9e62869465573cb2d9b5053f1fa02a81fce21d69"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v82p-hv3v-p6qp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn't checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AA74D7D-2A3B-4409-8F59-3421CEF5E32A",
              "versionEndExcluding": "2.6.0",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions under certain conditions, Go code can trigger a segfault in string deallocation. For string tensors, `C.TF_TString_Dealloc` is called during garbage collection within a finalizer function. However, tensor structure isn\u0027t checked until encoding to avoid a performance penalty. The current method for dealloc assumes that encoding succeeded, but segfaults when a string tensor is garbage collected whose encoding failed (e.g., due to mismatched dimensions). To fix this, the call to set the finalizer function is deferred until `NewTensor` returns and, if encoding failed for a string tensor, deallocs are determined based on bytes written. We have patched the issue in GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, which is the other affected version."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas bajo determinadas condiciones, el c\u00f3digo Go puede desencadenar un error de segmentaci\u00f3n en la desasignaci\u00f3n de cadenas.\u0026#xa0;Para tensores de cadena, se llama a \"C.TF_TString_Dealloc\" durante la recolecci\u00f3n de basura dentro de una funci\u00f3n finalizer.\u0026#xa0;Sin embargo, la estructura del tensor no es comprobada hasta la codificaci\u00f3n para impedir que se lleve a cabo una penalizaci\u00f3n del rendimiento.\u0026#xa0;El m\u00e9todo actual para dealloc asume que la codificaci\u00f3n tuvo \u00e9xito, pero segfaults cuando se recolecta basura un tensor de cadena cuya codificaci\u00f3n fall\u00f3 (por ejemplo, debido a dimensiones no coincidentes).\u0026#xa0;Para solucionar este problema, la llamada para establecer la funci\u00f3n finalizer se aplaza hasta que regrese \"NewTensor\" y, si la codificaci\u00f3n presenta un fallo para un tensor de cadena, las deslocalizaciones se determinan en funci\u00f3n de los bytes escritos.\u0026#xa0;Hemos solucionado el problema en GitHub commit 8721ba96e5760c229217b594f6d2ba332beedf22.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, que es la otra versi\u00f3n afectada."
    }
  ],
  "id": "CVE-2021-37692",
  "lastModified": "2024-11-21T06:15:42.993",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.967",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/50508"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8721ba96e5760c229217b594f6d2ba332beedf22"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/50508"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cmgw-8vpc-rc59"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 23:15
Modified
2024-11-21 05:19
Summary
In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched.
Impacted products
Vendor Product Version
google tensorflow 2.4.0
google tensorflow 2.4.0
google tensorflow 2.4.0
google tensorflow 2.4.0
google tensorflow 2.4.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.4.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "282DEFCC-C624-4BE0-B3D8-0E36A64910A2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.4.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "6C14D966-92B3-47A6-B2D3-7A296FE60840",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.4.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "72C6C072-43AA-434C-9D5B-3ED310170DA4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.4.0:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "5F9D2583-48BB-4AE5-803C-4A9BEBE9B000",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.4.0:rc4:*:*:*:*:*:*",
              "matchCriteriaId": "77D52D6F-1833-4C9C-9AE2-C9D500E20AAC",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow release candidate versions 2.4.0rc*, the general implementation for matching filesystem paths to globbing pattern is vulnerable to an access out of bounds of the array holding the directories. There are multiple invariants and preconditions that are assumed by the parallel implementation of GetMatchingPaths but are not verified by the PRs introducing it (#40861 and #44310). Thus, we are completely rewriting the implementation to fully specify and validate these. This is patched in version 2.4.0. This issue only impacts master branch and the release candidates for TF version 2.4. The final release of the 2.4 release will be patched."
    },
    {
      "lang": "es",
      "value": "En las versiones candidatas a lanzamiento de TensorFlow 2.4.0rc*, la implementaci\u00f3n general para hacer coincidir las rutas del sistema de archivos con el patr\u00f3n globbing es vulnerable a un acceso fuera de l\u00edmites de la matriz que contiene los directorios.\u0026#xa0;Existen m\u00faltiples invariantes y condiciones previas que son asumidas por la implementaci\u00f3n paralela de GetMatchingPaths pero no son verificadas por los RP que lo presentan (#40861 y #44310).\u0026#xa0;Por lo tanto, estamos reescribiendo completamente la implementaci\u00f3n para especificarlos y validarlos completamente.\u0026#xa0;Esto est\u00e1 parcheado en la versi\u00f3n 2.4.0.\u0026#xa0;Este problema solo afecta a la rama maestra y a los candidatas de lanzamiento para TF versi\u00f3n 2.4.\u0026#xa0;La versi\u00f3n final de la versi\u00f3n 2.4 ser\u00e1 parcheada."
    }
  ],
  "id": "CVE-2020-26269",
  "lastModified": "2024-11-21T05:19:42.820",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T23:15:12.910",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8b5b9dc96666a3a5d27fad7179ff215e3b74b67c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9jjw-hf72-3mxw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `RangeSize` receives values that do not fit into an `int64_t`, it crashes. We have patched the issue in GitHub commit 37e64539cd29fcfb814c4451152a60f5d107b0f0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `RangeSize` receives values that do not fit into an `int64_t`, it crashes. We have patched the issue in GitHub commit 37e64539cd29fcfb814c4451152a60f5d107b0f0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"RangeSize\" recibe valores que no caben en un \"int64_t\", es bloqueado. Hemos parcheado el problema en el commit 37e64539cd29fcfb814c4451152a60f5d107b0f0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36015",
  "lastModified": "2024-11-21T07:12:11.277",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.243",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ops/math_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37e64539cd29fcfb814c4451152a60f5d107b0f0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rh87-q4vg-m45j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The `simplifyBroadcast` function in the MLIR-TFRT infrastructure in TensorFlow is vulnerable to a segfault (hence, denial of service), if called with scalar shapes. If all shapes are scalar, then `maxRank` is 0, so we build an empty `SmallVector`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "314D4EED-CA11-4FD5-9CE0-52608A69168E",
              "versionEndExcluding": "2.8.0",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The `simplifyBroadcast` function in the MLIR-TFRT infrastructure in TensorFlow is vulnerable to a segfault (hence, denial of service), if called with scalar shapes. If all shapes are scalar, then `maxRank` is 0, so we build an empty `SmallVector`. The fix will be included in TensorFlow 2.8.0. This is the only affected version."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La funci\u00f3n \"simplifyBroadcast\" en la infraestructura MLIR-TFRT en TensorFlow es vulnerable a un segfault (por lo tanto, denegaci\u00f3n de servicio), si es llamado con formas escalares. Si todas las formas son escalares, entonces \"maxRank\" es 0, por lo que construimos un \"SmallVector\" vac\u00edo. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Esta es la \u00fanica versi\u00f3n afectada"
    }
  ],
  "id": "CVE-2022-23593",
  "lastModified": "2024-11-21T06:48:53.263",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.357",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/compiler/mlir/tfrt/jit/transforms/tf_cpurt_symbolic_shape_optimization.cc#L149-L205"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/35f0fabb4c178253a964d7aabdbb15c6a398b69a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gwcx-jrx4-92w2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The implementation of `AvgPoolGrad` does not fully validate the input `orig_input_shape`. This results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPoolGrad` does not fully validate the input `orig_input_shape`. This results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de \"AvgPoolGrad\" no comprueba completamente la entrada \"orig_input_shape\". Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35968",
  "lastModified": "2024-11-21T07:12:04.493",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.163",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2475-53vw-vp25"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions due to incomplete validation in `tf.raw_ops.QuantizeV2`, an attacker can trigger undefined behavior via binding a reference to a null pointer or can access data outside the bounds of heap allocated arrays. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) has some validation but does not check that `min_range` and `max_range` both have the same non-zero number of elements. If `axis` is provided (i.e., not `-1`), then validation should check that it is a value in range for the rank of `input` tensor and then the lengths of `min_range` and `max_range` inputs match the `axis` dimension of the `input` tensor. We have patched the issue in GitHub commit 6da6620efad397c85493b8f8667b821403516708. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas debido a una comprobaci\u00f3n incompleta en \"tf.raw_ops.QuantizeV2\", un atacante puede desencadenar un comportamiento indefinido vinculando una referencia a un puntero null o puede acceder a datos fuera de l\u00edmites de las matrices asignadas a la pila.\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/quantize_op.cc#L59) presenta alguna comprobaci\u00f3n, pero no comprueba que \"min_range\" y\" max_range\" tengan el mismo n\u00famero de elementos distinto de cero.\u0026#xa0;Si se proporciona \"axis\" (es decir, no\" -1\"), entonces la comprobaci\u00f3n debe verificar que sea un valor en el rango para el rango del tensor de \"input\" y luego las longitudes de las entradas de\" min_range\" y \"max_range\" coincidan con las Dimensi\u00f3n \"axis\" del tensor\" input\".\u0026#xa0;Hemos solucionado el problema en GitHub commit 6da6620efad397c85493b8f8667b821403516708.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37663",
  "lastModified": "2024-11-21T06:15:38.697",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.233",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6da6620efad397c85493b8f8667b821403516708"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g25h-jr74-qp5j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Una comprobaci\u00f3n incompleta en \"SparseAdd\" resulta en que los atacantes puedan explotar el comportamiento indefinido (desreferenciar punteros nulls), as\u00ed como escribir fuera de l\u00edmites de los datos asignados a la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc) presenta un gran ajuste de comprobaci\u00f3n para los dos tensores en total entradas no comprobar que los tensores no est\u00e9n vac\u00edos o que la segunda dimensi\u00f3n de \"* _indices\" coincida con el tama\u00f1o de \"* _shape\" correspondiente.\u0026#xa0;Esto permite a los atacantes enviar triples de tensor que representan tensores dispersos no comprobados para abusar de supuestos de c\u00f3digo que no est\u00e1n protegidos por comprobaci\u00f3n.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.Tambi\u00e9n seleccionaremos este commits en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que tambi\u00e9n est\u00e1n afectadas y a\u00fan se encuentran en el rango compatible"
    }
  ],
  "id": "CVE-2021-29607",
  "lastModified": "2024-11-21T06:01:28.897",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 4.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.763",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f6fde895ef9c77d848061c0517f19d0ec2682f3a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gv26-jpj9-c8gq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in `TfLiteIntArrayCreate`. The `TfLiteIntArrayGetSizeInBytes` returns an `int` instead of a `size_t. An attacker can control model inputs such that `computed_size` overflows the size of `int` datatype. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause an integer overflow in `TfLiteIntArrayCreate`. The `TfLiteIntArrayGetSizeInBytes` returns an `int` instead of a `size_t. An attacker can control model inputs such that `computed_size` overflows the size of `int` datatype. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo TFLite que cause un desbordamiento de enteros en \"TfLiteIntArrayCreate\". El \"TfLiteIntArrayGetSizeInBytes\" devuelve un \"int\" en lugar de un \"size_t\". Un atacante puede controlar las entradas del modelo de forma que \"computed_size\" desborde el tama\u00f1o del tipo de datos \"int\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23558",
  "lastModified": "2024-11-21T06:48:48.640",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.617",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L24-L33"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ca6f96b62ad84207fbec580404eaa7dd7403a550/tensorflow/lite/c/common.c#L53-L60"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a1e1511dde36b3f8aa27a6ec630838e7ea40e091"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9gwq-6cwj-47h3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that assertions in `function.cc` would be falsified and crash the Python interpreter. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that assertions in `function.cc` would be falsified and crash the Python interpreter. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un usuario malicioso puede causar una denegaci\u00f3n de servicio alterando un \"SavedModel\" de tal manera que las aserciones en \"function.cc\" sean falsificadas y sea bloqueado el int\u00e9rprete de Python. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23586",
  "lastModified": "2024-11-21T06:48:52.323",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.977",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/function.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3d89911481ba6ebe8c88c1c0b595412121e6c645"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dcc21c7bc972b10b6fb95c2fb0f4ab5a59680ec2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-43jf-985q-588j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-24 21:29
Modified
2024-11-21 04:12
Severity ?
Summary
Google TensorFlow 1.7.x and earlier is affected by a Buffer Overflow vulnerability. The type of exploitation is context-dependent.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "024764CC-98AC-4216-9AA8-2FBC65877C00",
              "versionEndIncluding": "1.7.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Google TensorFlow 1.7.x and earlier is affected by a Buffer Overflow vulnerability. The type of exploitation is context-dependent."
    },
    {
      "lang": "es",
      "value": "Google TensorFlow versiones 1.7.X y anteriores, se ve afectado por una vulnerabilidad de desbordamiento de b\u00fafer. El tipo de explotaci\u00f3n es: dependiente del contexto."
    }
  ],
  "id": "CVE-2018-7575",
  "lastModified": "2024-11-21T04:12:23.937",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-24T21:29:00.570",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-004.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 18:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `\u0026\u0026`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede causar una excepci\u00f3n de punto flotante llamando a operaciones inplace con argumentos dise\u00f1ados para causar una divisi\u00f3n por 0. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) presenta un error l\u00f3gico: deber\u00eda omitir el procesamiento si \"x\" y \"v\" est\u00e1n vac\u00edos, pero el c\u00f3digo usa \"||\" en lugar de \"\u0026amp;\u0026amp;\". Hemos parcheado el problema en el commit e86605c0a336c088b638da02135ea6f9f6753618 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37660",
  "lastModified": "2024-11-21T06:15:38.270",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T18:15:10.903",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateTensorSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve a tensor with large enough number of elements. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La implementaci\u00f3n de \"OpLevelCostEstimator::CalculateTensorSize\" es vulnerable a un desbordamiento de enteros si un atacante puede crear una operaci\u00f3n que implique un tensor con un n\u00famero de elementos suficientemente grande. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23575",
  "lastModified": "2024-11-21T06:48:50.873",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.393",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1552-L1558"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fcd18ce3101f245b083b30655c27b239dc72221e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c94w-c95p-phf8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementations of the `Minimum` and `Maximum` TFLite operators can be used to read data outside of bounds of heap allocated objects, if any of the two input tensor arguments are empty. This is because the broadcasting implementation(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexes in both tensors with the same index but does not validate that the index is within bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Las implementaciones de los operadores TFLite \"Minimum\" y  \"Maximum\" puede ser usados para leer datos fuera de l\u00edmites de los objetos asignados a la pila, si alguno de los dos argumentos del tensor de entrada est\u00e1 vac\u00edo.\u0026#xa0;Esto es debido a que la implementaci\u00f3n de transmisi\u00f3n (https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/maximum_minimum.h#L52-L56) indexa en ambos \u00edndices pero con el mismo \u00edndice no comprueba que el \u00edndice est\u00e9 dentro de los l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29590",
  "lastModified": "2024-11-21T06:01:26.680",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.817",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/953f28dca13c92839ba389c055587cfe6c723578"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-24x6-8c7m-hv3f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments, if the tensors have an invalid `dtype` and 0 elements or an invalid shape. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Cuando es decodificado un tensor a partir de un protobuf, un proceso de TensorFlow puede encontrarse con casos en los que no es comprobada una aserci\u00f3n \"CHECK\" basada en argumentos controlados por el usuario, si los tensores tienen un \"dtype\" no v\u00e1lido y 0 elementos o una forma no v\u00e1lida. Esto permite a atacantes causar la denegaci\u00f3n de servicios en los procesos de TensorFlow. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23571",
  "lastModified": "2024-11-21T06:48:50.357",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.170",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5b491cd5e41ad63735161cec9c2a568172c8b6a3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j3mj-fhpq-qqjj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-01-28 22:15
Modified
2024-11-21 05:33
Summary
In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant("hello", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A06443A2-7C96-4B0D-A014-3CE4692A5818",
              "versionEndExcluding": "1.15.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E24E496-9BD4-43D3-80F9-9619815BAD03",
              "versionEndExcluding": "2.0.1",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue can lead to denial of service in inference/training where a malicious attacker can send a data point which contains a string instead of a tf.float16 value. Similar effects can be obtained by manipulating saved models and checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic conversions. This can be easily reproduced by tf.constant(\"hello\", tf.float16), if eager execution is enabled. This issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or 2.1.0."
    },
    {
      "lang": "es",
      "value": "En TensorFlow versiones anteriores a 1.15.2 y 2.0.1, la conversi\u00f3n de una cadena (de Python) a un valor tf.float16 resulta en un fallo de segmentaci\u00f3n en modo eager, ya que las comprobaciones de formato para este caso de uso solo est\u00e1n en el modo graph. Este problema puede conllevar a una denegaci\u00f3n de servicio en inference/training, donde un atacante malicioso puede enviar un punto de datos que contiene una cadena en lugar de un valor tf.float16. Efectos similares pueden ser obtenidos mediante la manipulaci\u00f3n de modelos guardados y puntos de control por los cuales se reemplaza un valor escalar tf.float16 por una cadena escalar, este problema se desencadenar\u00e1 debido a las conversiones autom\u00e1ticas. Esto puede ser reproducido f\u00e1cilmente mediante tf.constant(\"hello\", tf.float16), si una ejecuci\u00f3n eager es habilitada. Este problema es parcheado en TensorFlow versiones 1.15.1 y 2.0.1 con esta vulnerabilidad parcheada. TensorFlow versi\u00f3n 2.1.0 fue publicada despu\u00e9s de que corregimos el problema, por lo que no est\u00e1 afectado. Se incentiva a los usuarios a cambiar a TensorFlow versiones 1.15.1, 2.0.1 o 2.1.0."
    }
  ],
  "id": "CVE-2020-5215",
  "lastModified": "2024-11-21T05:33:41.743",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 5.0,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:L/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 0.8,
        "impactScore": 3.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-01-28T22:15:11.090",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5ac1b9e24ff6afc465756edf845d2e9660bd34bf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v1.15.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.0.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-977j-xj7q-2jr9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateOutputSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve tensors with large enough number of elements. We can have a large enough number of dimensions in `output_shape.dim()` or just a small number of dimensions being large enough to cause an overflow in the multiplication. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `OpLevelCostEstimator::CalculateOutputSize` is vulnerable to an integer overflow if an attacker can create an operation which would involve tensors with large enough number of elements. We can have a large enough number of dimensions in `output_shape.dim()` or just a small number of dimensions being large enough to cause an overflow in the multiplication. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La implementaci\u00f3n de \"OpLevelCostEstimator::CalculateOutputSize\" es vulnerable a un desbordamiento de enteros si un atacante puede crear una operaci\u00f3n que involucre tensores con un n\u00famero suficientemente grande de elementos. Podemos tener un n\u00famero suficientemente grande de dimensiones en \"output_shape.dim()\" o s\u00f3lo un peque\u00f1o n\u00famero de dimensiones siendo lo suficientemente grande para causar un desbordamiento en la multiplicaci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23576",
  "lastModified": "2024-11-21T06:48:50.993",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.447",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L1598-L1617"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b9bd6cfd1c50e6807846af9a86f9b83cafc9c8ae"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wm93-f238-7v37"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The implementation of `Conv2DBackpropInput` requires `input_sizes` to be 4-dimensional. Otherwise, it gives a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 50156d547b9a1da0144d7babe665cf690305b33c. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of `Conv2DBackpropInput` requires `input_sizes` to be 4-dimensional. Otherwise, it gives a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 50156d547b9a1da0144d7babe665cf690305b33c. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de \"Conv2DBackpropInput\" requiere que \"input_sizes\" sea de 4 dimensiones. De lo contrario, da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 50156d547b9a1da0144d7babe665cf690305b33c de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35969",
  "lastModified": "2024-11-21T07:12:04.633",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.227",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/50156d547b9a1da0144d7babe665cf690305b33c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q2c3-jpmc-gfjx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de inferencia de formas para \"AllToAll\" puede hacer que se ejecute una divisi\u00f3n por 0. Esto ocurre siempre que el argumento \"split_count\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41218",
  "lastModified": "2024-11-21T06:25:48.363",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.667",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a8ad3e5e79c75f36edb81e0ba3f3c0c5442aeddc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9crf-c6qr-r273"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `tf.linalg.matrix_rank` receives an empty input `a`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.linalg.matrix_rank` receives an empty input `a`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"tf.linalg.matrix_rank\" recibe una entrada vac\u00eda \"a\", el kernel de la GPU da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit de GitHub c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35988",
  "lastModified": "2024-11-21T07:12:07.423",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.607",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c55b476aa0e0bd4ee99d0f3ad18d9d706cd1260a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9vqj-64pv-w55c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "7A5421A9-693F-472A-9A21-43950C884C77",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "B0FEB74E-5E54-4A2F-910C-FA1812C73DB2",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "47D83682-6615-49BC-8043-F36B9D017578",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, if a TFLite saved model uses the same tensor as both input and output of an operator, then, depending on the operator, we can observe a segmentation fault or just memory corruption. We have patched the issue in d58c96946b and will release patch releases for all versions between 1.15 and 2.3. We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En tensorflow-lite versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, si un modelo guardado de TFLite usa el mismo tensor como entrada y salida de un operador, entonces, dependiendo del operador, podemos observar un fallo de segmentaci\u00f3n o solo una corrupci\u00f3n de la memoria.\u0026#xa0;Hemos parcheado el problema en d58c96946b y publicaremos parches para todas las versiones entre 1.15 y 2.3.\u0026#xa0;Recomendamos a los usuarios que actualicen a TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15210",
  "lastModified": "2024-11-21T05:05:05.720",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.8,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 4.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 4.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d58c96946b2880991d63d1dacacb32f0a4dfa453"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x9j7-x98r-r4w2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a tensor from protobuf, TensorFlow might do a null-dereference if attributes of some mutable arguments to some operations are missing from the proto. This is guarded by a `DCHECK`. However, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the dereferencing of the null pointer, whereas in the second case it results in a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Cuando es decodificado un tensor a partir de un protobuf, TensorFlow podr\u00eda hacer una referencia nula si los atributos de algunos argumentos mutables de algunas operaciones faltan en el proto. Esto est\u00e1 protegido por un \"DCHECK\". Sin embargo, \"DCHECK\" es un no-op en las construcciones de producci\u00f3n y un fallo de aserci\u00f3n en las construcciones de depuraci\u00f3n. En el primer caso la ejecuci\u00f3n procede a una desreferenciaci\u00f3n de puntero null, mientras que en el segundo caso resulta en un fallo debido a aserci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, y TensorFlow versi\u00f3n 2.6.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23570",
  "lastModified": "2024-11-21T06:48:50.227",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.113",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L104-L106"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a513cec4bec15961fbfdedcaa5376522980455c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9p77-mmrw-69c7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        },
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.StagePeek` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `index` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdbPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdbPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7Release Notes, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.StagePeek` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `index` is a scalar but there is no validation for this before accessing its value. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.StagePeek\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo asume que \"index\" es un escalar pero no es comprobado antes de acceder a su valor. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29195",
  "lastModified": "2024-11-21T06:58:41.223",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.623",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/stage_op.cc#L26"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cebe3c45d76357d201c65bdbbf0dbe6e8a63bbdb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h48f-q7rw-hvr7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. `tf.keras.losses.poisson` recibe `y_pred` y `y_true` que se pasan a trav\u00e9s de `functor::mul` en `BinaryOp`. Si las dimensiones resultantes desbordan un `int32`, TensorFlow fallar\u00e1 debido a una discrepancia de tama\u00f1o durante la asignaci\u00f3n de transmisi\u00f3n. Hemos solucionado el problema en el commit de GitHub c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1 y 2.9.3, ya que tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido. Sin embargo, no seleccionaremos este commit en TensorFlow 2.8.x, ya que depende del comportamiento propio que cambi\u00f3 entre 2.8 y 2.9."
    }
  ],
  "id": "CVE-2022-41887",
  "lastModified": "2024-11-21T07:23:59.770",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:14.817",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling TF operations with tensors of non-numeric types when the operations expect numeric tensors result in null pointer dereferences. The conversion from Python array to C++ array(https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) is vulnerable to a type confusion. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Llamar a operaciones TF con tensores de tipos no num\u00e9ricos cuando las operaciones esperan tensores num\u00e9ricos dan como resultado desreferencias de puntero null.\u0026#xa0;La conversi\u00f3n de una matriz de Python a una matriz de C++ (https://github.com/tensorflow/tensorflow/blob/ff70c47a396ef1e3cb73c90513da4f5cb71bebba/tensorflow/python/lib/core/ndarray_tensor.cc#L113-L169) es vulnerable a una confusi\u00f3n de tipos.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29513",
  "lastModified": "2024-11-21T06:01:17.100",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.190",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/030af767d357d1b4088c4a25c72cb3906abac489"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-452g-f7fp-9jf7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        },
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedAdd` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAdd` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"QuantizedAdd\" le son dados tensores \"min_input\" o \"max_input\" de un rango distinto de cero, resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 49b3824d83af706df0ad07e4e677d88659756d89 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35967",
  "lastModified": "2024-11-21T07:12:04.350",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.097",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6h3-348g-6h5x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-12-16 21:15
Modified
2024-11-21 04:31
Summary
In TensorFlow before 1.15, a heap buffer overflow in UnsortedSegmentSum can be produced when the Index template argument is int32. In this case data_size and num_segments fields are truncated from int64 to int32 and can produce negative numbers, resulting in accessing out of bounds heap memory. This is unlikely to be exploitable and was detected and fixed internally in TensorFlow 1.15 and 2.0.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "4E5F862F-CC11-42FE-ABC5-AA63A003E6FF",
              "versionEndExcluding": "1.15.0",
              "versionStartIncluding": "1.0.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow before 1.15, a heap buffer overflow in UnsortedSegmentSum can be produced when the Index template argument is int32. In this case data_size and num_segments fields are truncated from int64 to int32 and can produce negative numbers, resulting in accessing out of bounds heap memory. This is unlikely to be exploitable and was detected and fixed internally in TensorFlow 1.15 and 2.0."
    },
    {
      "lang": "es",
      "value": "En TensorFlow versiones anteriores a 1.15, un desbordamiento de b\u00fafer de la pila puede ser producido en la funci\u00f3n UnsortedSegmentSum cuando el argumento de la plantilla Index es int32. En este caso, los campos data_size y num_segments son truncados de int64 hasta int32 y pueden producir n\u00fameros negativos, resultando en el acceso a la memoria de la pila fuera de los l\u00edmites. Es poco probable que sea explotable y se detect\u00f3 y repar\u00f3 internamente en TensorFlow versiones 1.15 y 2.0."
    }
  ],
  "id": "CVE-2019-16778",
  "lastModified": "2024-11-21T04:31:10.367",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 2.6,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-12-16T21:15:11.403",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2019-002.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/db4f9717c41bccc3ce10099ab61996b246099892"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-844w-j86r-4x2j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. This issue has been patched in GitHub commit 4142e47e9e31db481781b955ed3ff807a781b494. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `GatherNd` function takes arguments that determine the sizes of inputs and outputs. If the inputs given are greater than or equal to the sizes of the outputs, an out-of-bounds memory read or a crash is triggered. This issue has been patched in GitHub commit 4142e47e9e31db481781b955ed3ff807a781b494. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"GatherNd\" toma argumentos que determinan el tama\u00f1o de las entradas y salidas. Si las entradas dadas son mayores o iguales a los tama\u00f1os de las salidas, es desencadenada una lectura de memoria fuera de los l\u00edmites o un bloqueo. Este problema ha sido corregido en el commit 4142e47e9e31db481781b955ed3ff807a781b494 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35938",
  "lastModified": "2024-11-21T07:12:00.387",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.0,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.177",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3m3g-pf5v-5hpj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tflite-micro/blob/1bc98621180a350eb4e8d3318ea8e228c7559b37/tensorflow/lite/micro/kernels/gather_nd.cc#L143-L154"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tflite-micro/commit/4142e47e9e31db481781b955ed3ff807a781b494"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.ccThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09aPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cfExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.ccThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09aPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cfExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.LSTMBlockCell` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate the ranks of any of the arguments to this API call. This results in `CHECK`-failures when the elements of the tensor are accessed. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.LSTMBlockCell\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo no comprueba los rangos de ninguno de los argumentos de esta llamada a la API. Esto resulta en fallos de \"CHECK\" cuando son accedidos a los elementos del tensor. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29200",
  "lastModified": "2024-11-21T06:58:41.957",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.933",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/rnn/lstm_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/803404044ae7a1efac48ba82d74111fce1ddb09a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2vv3-56qg-g2cf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.CTCBeamSearchDecoder`, an attacker can trigger denial of service via segmentation faults. The implementation(https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) fails to detect cases when the input tensor is empty and proceeds to read data from a null buffer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Debido a una falta de comprobaci\u00f3n en la funci\u00f3n \"tf.raw_ops.CTCBeamSearchDecoder\", un atacante puede desencadenar la denegaci\u00f3n de servicio por medio de fallos de segmentaci\u00f3n.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/a74768f8e4efbda4def9f16ee7e13cf3922ac5f7/tensorflow/core/kernels/ctc_decoder_ops.cc#L68-L79) no detecta casos cuando el tensor de entrada est\u00e1 vac\u00edo y procede a leer datos de un b\u00fafer null.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29581",
  "lastModified": "2024-11-21T06:01:25.570",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.343",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b1b323042264740c398140da32e93fb9c2c9f33e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq2r-5xvm-3hc3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, integer overflow occurs when `2^31 <= num_frames * height * width * channels < 2^32`, for example Full HD screencast of at least 346 frames. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, integer overflow occurs when `2^31 \u003c= num_frames * height * width * channels \u003c 2^32`, for example Full HD screencast of at least 346 frames. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25667",
  "lastModified": "2024-11-21T07:49:54.343",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.537",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8dc723fcdd1a6127d6c970bd2ecb18b019a1a58d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fqm2-gh8w-gr68"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `ThreadUnsafeUnigramCandidateSampler` is given input `filterbank_channel_count` greater than the allowed max size, TensorFlow will crash. We have patched the issue in GitHub commit 39ec7eaf1428e90c37787e5b3fbd68ebd3c48860. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `ThreadUnsafeUnigramCandidateSampler` is given input `filterbank_channel_count` greater than the allowed max size, TensorFlow will crash. We have patched the issue in GitHub commit 39ec7eaf1428e90c37787e5b3fbd68ebd3c48860. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `ThreadUnsafeUnigramCandidateSampler` se le da una entrada `filterbank_channel_count` mayor que el tama\u00f1o m\u00e1ximo permitido, TensorFlow fallar\u00e1. Hemos solucionado el problema en el commit de GitHub 39ec7eaf1428e90c37787e5b3fbd68ebd3c48860. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41896",
  "lastModified": "2024-11-21T07:24:01.047",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:18.590",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/39ec7eaf1428e90c37787e5b3fbd68ebd3c48860"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rmg2-f698-wq35"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/mirror_pad_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/39ec7eaf1428e90c37787e5b3fbd68ebd3c48860"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rmg2-f698-wq35"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede desencadenar un comportamiento indefinido, desbordamientos de enteros, segfaults y fallos de \"CHECK\" si puede cambiar los puntos de control guardados desde fuera de TensorFlow. Esto es debido a que la infraestructura de carga de los puntos de control carece de la comprobaci\u00f3n de los formatos de archivo no v\u00e1lidos. Las correcciones ser\u00e1n incluidas en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a recoger estos commits en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango admitido"
    }
  ],
  "id": "CVE-2021-41203",
  "lastModified": "2024-11-21T06:25:45.840",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.613",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/368af875869a204b4ac552b9ddda59f6a46a56ec"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/abcced051cb1bd8fb05046ac3b6023a7ebcc4578"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b619c6f865715ca3b15ef1842b5b95edbaa710ad"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e8dc63704c88007ee4713076605c90188d66f3d2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7pxj-m4jf-r6h2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-345"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.3.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Thus, the code sets up conditions to cause a heap buffer overflow. A `BatchedMap` is equivalent to a vector where each element is a hashmap. However, if the first element of `splits_values` is not 0, `batch_idx` will never be 1, hence there will be no hashmap at index 0 in `per_batch_counts`. Trying to access that in the user code results in a segmentation fault. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a la versi\u00f3n 2.3.1, la implementaci\u00f3n de \"RaggedCountSparseOutput\" no comprueba que los argumentos de entrada formen un tensor irregular v\u00e1lido.\u0026#xa0;En particular, no existe comprobaci\u00f3n de que los valores en el tensor \"splits\" generen una partici\u00f3n v\u00e1lida del tensor \"values\".\u0026#xa0;Por lo tanto, el c\u00f3digo establece las condiciones para causar un desbordamiento del b\u00fafer de la pila.\u0026#xa0;Un \"BatchedMap\" es equivalente a un vector donde cada elemento es un mapa de hash.\u0026#xa0;Sin embargo, si el primer elemento de \"splits_values\" no es 0, \"batch_idx\" nunca ser\u00e1 1, por lo que no habr\u00e1 un hashmap en el \u00edndice 0 en \"per_batch_counts\".\u0026#xa0;Intentar acceder a eso en el c\u00f3digo de usuario resulta en un fallo de segmentaci\u00f3n.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15200",
  "lastModified": "2024-11-21T05:05:04.157",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.260",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x7rp-74x2-mjf3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas el c\u00f3digo de inferencia de formas para \"tf.ragged.cross\" presenta un comportamiento indefinido debido a la vinculaci\u00f3n de una referencia a \"nullptr\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41214",
  "lastModified": "2024-11-21T06:25:47.720",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.940",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fa6b7782fbb14aa08d767bc799c531f5e1fb3bb8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vwhq-49r4-gj9v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow is vulnerable to an integer overflow during cost estimation for crop and resize. Since the cropping parameters are user controlled, a malicious person can trigger undefined behavior. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, Grappler component of TensorFlow is vulnerable to an integer overflow during cost estimation for crop and resize. Since the cropping parameters are user controlled, a malicious person can trigger undefined behavior. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Bajo determinados escenarios, el componente Grappler de TensorFlow es vulnerable a un desbordamiento de enteros durante la estimaci\u00f3n de costes para el recorte y redimensionamiento. Dado que los par\u00e1metros de recorte son controlados por el usuario, una persona maliciosa puede desencadenar un comportamiento indefinido. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23587",
  "lastModified": "2024-11-21T06:48:52.450",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.033",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L2621-L2689"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0aaaae6eca5a7175a193696383f582f53adab23f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8jj7-5vxc-pg2q"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The `GraphDef` format in TensorFlow does not allow self recursive functions. The runtime assumes that this invariant is satisfied. However, a `GraphDef` containing a fragment such as the following can be consumed when loading a `SavedModel`. This would result in a stack overflow during execution as resolving each `NodeDef` means resolving the function itself and its nodes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The `GraphDef` format in TensorFlow does not allow self recursive functions. The runtime assumes that this invariant is satisfied. However, a `GraphDef` containing a fragment such as the following can be consumed when loading a `SavedModel`. This would result in a stack overflow during execution as resolving each `NodeDef` means resolving the function itself and its nodes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. El formato \"GraphDef\" en TensorFlow no permite funciones auto recursivas. El tiempo de ejecuci\u00f3n asume que este invariante es satisfecho. Sin embargo, un \"GraphDef\" que contiene un fragmento como el siguiente puede ser consumido cuando es cargado un \"SavedModel\". Esto resultar\u00eda en un desbordamiento de pila durante la ejecuci\u00f3n, ya que resolver cada \"NodeDef\" significa resolver la propia funci\u00f3n y sus nodos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23591",
  "lastModified": "2024-11-21T06:48:52.990",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.253",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/448a16182065bd08a202d9057dd8ca541e67996c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-247x-2f9f-5wp7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-400"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-674"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 22:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, las implementaciones de los operadores de convoluci\u00f3n provocan una divisi\u00f3n por 0 si son pasados argumentos de tensor de filtro vac\u00edos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41209",
  "lastModified": "2024-11-21T06:25:46.863",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T22:15:08.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f2c3931113eaafe9ef558faaddd48e00a6606235"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hpv-v2rx-c5g6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas el c\u00f3digo para la multiplicaci\u00f3n de matrices dispersas es vulnerable a un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a \"nullptr\". Esto ocurre siempre que las dimensiones de \"a\" o \"b\" sean 0 o menos. En el caso de que una de ellas sea 0, es debido asignar un tensor de salida vac\u00edo (para conservar el invariante de que los tensores de salida siempre se asignan cuando la operaci\u00f3n presenta \u00e9xito) pero no es debido escribir nada en \u00e9l (es decir, debemos regresar antes de tiempo de la implementaci\u00f3n del n\u00facleo). De lo contrario, los intentos de escribir en este tensor vac\u00edo resultar\u00edan en un acceso OOB a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41219",
  "lastModified": "2024-11-21T06:25:48.520",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.137",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-27 20:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an Open Source Machine Learning Framework. In versions prior to 2.11.1 a malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. A proof of concept can be constructed with the `Convolution3DTranspose` function. This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services. An attacker must have privilege to provide input to a `Convolution3DTranspose` call. This issue has been patched and users are advised to upgrade to version 2.11.1. There are no known workarounds for this vulnerability.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "677029E5-422E-423C-9C8E-95A8483E51AE",
              "versionEndExcluding": "2.11.1",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an Open Source Machine Learning Framework. In versions prior to 2.11.1 a malicious invalid input crashes a tensorflow model (Check Failed) and can be used to trigger a denial of service attack. A proof of concept can be constructed with the `Convolution3DTranspose` function. This Convolution3DTranspose layer is a very common API in modern neural networks. The ML models containing such vulnerable components could be deployed in ML applications or as cloud services. This failure could be potentially used to trigger a denial of service attack on ML cloud services. An attacker must have privilege to provide input to a `Convolution3DTranspose` call. This issue has been patched and users are advised to upgrade to version 2.11.1. There are no known workarounds for this vulnerability."
    }
  ],
  "id": "CVE-2023-25661",
  "lastModified": "2024-11-21T07:49:53.560",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-27T20:15:09.417",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/948fe6369a5711d4b4568ea9bbf6015c6dfb77e2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxgc-95xx-grvq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 13:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `UnravelIndex` is vulnerable to a division by zero caused by an integer overflow bug. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"UnravelIndex\" es vulnerable a una divisi\u00f3n por cero causada por un error de desbordamiento de enteros. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21729",
  "lastModified": "2025-05-05T17:17:49.063",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T13:15:07.943",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/unravel_index_op.cc#L36-L135"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/58b34c6c8250983948b5a781b426f6aa01fd47af"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-34f9-hjfq-rr8j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, varias operaciones de TensorFlow se comportaban inapropiadamente en modo eager cuando el manejador de recursos que les era proporcionado no era v\u00e1lido. En el modo gr\u00e1fico, habr\u00eda sido imposible llevar a cabo estas llamadas a la API, pero la migraci\u00f3n al modo eager de TF 2.x abri\u00f3 esta vulnerabilidad. Si el manejador de recursos est\u00e1 vac\u00edo, entonces una referencia est\u00e1 ligada a un puntero null dentro de la base de c\u00f3digo de TensorFlow (varios codepaths). Esto es un comportamiento no definido. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29207",
  "lastModified": "2024-11-21T06:58:43.037",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.997",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a5b89cd68c02329d793356bda85d079e9e69b4e7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dbdd98c37bc25249e8f288bd30d01e118a7b4498"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5wpj-c6f7-24x8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-475"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the parameter `indices` for `DynamicStitch` does not match the shape of the parameter `data`, it can trigger an stack OOB read. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the parameter `indices` for `DynamicStitch` does not match the shape of the parameter `data`, it can trigger an stack OOB read. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25659",
  "lastModified": "2024-11-21T07:49:53.320",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.143",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee004b18b976eeb5a758020af8880236cd707d05"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-93vr-9q9m-pj8p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.ParallelConcat` segfaults with a nullptr dereference when given a parameter `shape` with rank that is not greater than zero. A fix is available in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.ParallelConcat` segfaults with a nullptr dereference when given a parameter `shape` with rank that is not greater than zero. A fix is available in TensorFlow 2.12.0 and 2.11.1."
    }
  ],
  "id": "CVE-2023-25676",
  "lastModified": "2024-11-21T07:49:55.443",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:08.057",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da66bc6d5ff466aee084f9e7397980a24890cd15"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6wfh-89q8-44jq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would trigger a division by zero in `BiasAndClamp` implementation. There is no check that the `bias_size` is non zero. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would trigger a division by zero in `BiasAndClamp` implementation. There is no check that the `bias_size` is non zero. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo de TFLite que desencadene una divisi\u00f3n por cero en la implementaci\u00f3n de \"BiasAndClamp\". No es comprobado que el \"bias_size\" sea distinto de cero. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23557",
  "lastModified": "2024-11-21T06:48:48.503",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.547",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/internal/common.h#L75"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8c6f391a2282684a25cbfec7687bd5d35261a209"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf2j-f278-xh4v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec<>()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.SparseFillEmptyRows`. This is because of missing validation(https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) that was covered under a `TODO`. If the `dense_shape` tensor is empty, then `dense_shape_t.vec\u003c\u003e()` would cause a null pointer dereference in the implementation of the op. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una desreferencia de puntero null en una implementaci\u00f3n de \"tf.raw_ops.SparseFillEmptyRows\".\u0026#xa0;Esto es debido a una falta de comprobaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/fdc82089d206e281c628a93771336bf87863d5e8/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc#L230-L231) esto se qued\u00f3 cubierto bajo un \"TODO\".\u0026#xa0;Si el tensor \"dense_shape\" est\u00e1 vac\u00edo, entonces \"dense_shape_t.vec()()\" causar\u00eda una desreferencia del puntero null en la implementaci\u00f3n de la operaci\u00f3n.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29565",
  "lastModified": "2024-11-21T06:01:23.633",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/faa76f39014ed3b5e2c158593b1335522e573c7f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6pg-pjwc-j585"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede leer fuera de l\u00edmites de los datos asignados a la pila mediante el env\u00edo de argumentos ilegales especialmente dise\u00f1ados a \"BoostedTreesSparseCalculateBestFeatureSplit\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) necesita comprender que cada valor en \"stats_summary_indices\" est\u00e1 en el rango. Hemos parcheado el problema en el commit e84c975313e8e8e38bb2ea118196369c45c51378 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37664",
  "lastModified": "2024-11-21T06:15:38.850",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:09.067",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e84c975313e8e8e38bb2ea118196369c45c51378"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4c4-5fpq-56wg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op's contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) does not validate all constraints specified in the op\u0027s contract(https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una divisi\u00f3n del tiempo de ejecuci\u00f3n por error cero y denegaci\u00f3n de servicio en \"tf.raw_ops.QuantizedBatchNormWithGlobalNormalization\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc) no comprueba todas las restricciones especificadas en el contrato de la operaci\u00f3n (https: //www.tensorflow .org/api_docs/python/tf/raw_ops/QuantizedBatchNormWithGlobalNormalization).\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29548",
  "lastModified": "2024-11-21T06:01:21.440",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.807",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p45v-v4pw-77jr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:23
Summary
TensorFlow is an open source platform for machine learning. When running on GPU, `tf.image.generate_bounding_box_proposals` receives a `scores` input that must be of rank 4 but is not checked. We have patched the issue in GitHub commit cf35502463a88ca7185a99daa7031df60b3c1c98. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When running on GPU, `tf.image.generate_bounding_box_proposals` receives a `scores` input that must be of rank 4 but is not checked. We have patched the issue in GitHub commit cf35502463a88ca7185a99daa7031df60b3c1c98. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando se ejecuta en GPU, `tf.image.generate_bounding_box_proposals` recibe una entrada de `scores` que debe ser de rango 4 pero no est\u00e1 marcada. Hemos solucionado el problema en el commit de GitHub cf35502463a88ca7185a99daa7031df60b3c1c98. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41888",
  "lastModified": "2024-11-21T07:23:59.910",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:15.203",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cf35502463a88ca7185a99daa7031df60b3c1c98"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6x99-gv2v-q76v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cf35502463a88ca7185a99daa7031df60b3c1c98"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6x99-gv2v-q76v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 23:15
Modified
2024-11-21 05:19
Summary
In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CA3A54AC-E0F8-4741-8A80-04EEF746B14B",
              "versionEndExcluding": "1.15.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "989E4548-7823-436F-A9FE-04158ED41C48",
              "versionEndExcluding": "2.0.4",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "46417CA8-E666-4E12-B2A8-BB0E97D49BF4",
              "versionEndExcluding": "2.1.3",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "57B24744-0D81-41E9-9ED0-7296368DEF00",
              "versionEndExcluding": "2.2.2",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "DBEA56AF-3495-4883-9721-0FA9F08E7F6D",
              "versionEndExcluding": "2.3.2",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
    },
    {
      "lang": "es",
      "value": "En las versiones afectadas de TensorFlow, en determinados casos, un modelo guardado puede activar el uso de valores no inicializados durante la ejecuci\u00f3n del c\u00f3digo.\u0026#xa0;Esto es debido a que los b\u00faferes de tensor se llenan con el valor predeterminado del tipo, pero se olvidan de inicializar por defecto los tipos de punto flotante cuantificados en Eigen.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0."
    }
  ],
  "id": "CVE-2020-26266",
  "lastModified": "2024-11-21T05:19:42.273",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T23:15:12.647",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edfPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/46890Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/51908Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7pPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edfPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/46890Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/51908Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7pPatch, Third Party Advisory
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas TensorFlow permite que el tensor tenga un gran n\u00famero de dimensiones y cada dimensi\u00f3n puede ser tan grande como se desee. Sin embargo, el n\u00famero total de elementos en un tensor debe caber dentro de un \"int64_t\". Si se produce un desbordamiento, \"MultiplyWithoutOverflow\" devolver\u00e1 un resultado negativo. En la mayor\u00eda de los c\u00f3digos de TensorFlow esto resulta en un fallo de \"CHECK\". Se presentan nuevas construcciones que devuelven un \"Status\" en lugar de bloquear el binario. Esto es similar a CVE-2021-29584. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41197",
  "lastModified": "2024-11-21T06:25:44.853",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:07.843",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46890"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/51908"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7c1692bd417eb4f9b33ead749a41166d6080af85"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a871989d7b6c18cdebf2fb4f0e5c5b62fbc19edf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d81b1351da3e8c884ff836b64458d94e4a157c15"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46890"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/51908"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-prcg-wp5q-rv7p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 22:15
Modified
2024-11-21 05:19
Summary
In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CA3A54AC-E0F8-4741-8A80-04EEF746B14B",
              "versionEndExcluding": "1.15.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "989E4548-7823-436F-A9FE-04158ED41C48",
              "versionEndExcluding": "2.0.4",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "46417CA8-E666-4E12-B2A8-BB0E97D49BF4",
              "versionEndExcluding": "2.1.3",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "57B24744-0D81-41E9-9ED0-7296368DEF00",
              "versionEndExcluding": "2.2.2",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "DBEA56AF-3495-4883-9721-0FA9F08E7F6D",
              "versionEndExcluding": "2.3.2",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In affected versions of TensorFlow under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
    },
    {
      "lang": "es",
      "value": "En las versiones afectadas de TensorFlow en determinados casos, cargar un modelo guardado puede resultar en el acceso a la memoria no inicializada mientras se construye el gr\u00e1fico de computaci\u00f3n.\u0026#xa0;La funci\u00f3n MakeEdge crea un per\u00edmetro entre un tensor de salida del nodo src (dado por output_index) y la ranura de entrada del nodo dst (dado por input_index).\u0026#xa0;Esto solo es posible si los tipos de tensores en ambos lados coinciden, por lo que la funci\u00f3n comienza obteniendo los valores de DataType correspondientes y compar\u00e1ndolos para la igualdad.\u0026#xa0;Sin embargo, no se comprueba que los \u00edndices apunten al interior de las matrices en las que indexan.\u0026#xa0;Por lo tanto, esto puede resultar en un acceso a datos fuera de l\u00edmites de los correspondientes arreglos asignados a la pila.\u0026#xa0;En la mayor\u00eda de los escenarios, esto puede manifestarse como un acceso a los datos no inicializados,\u0026#xa0;pero si el \u00edndice apunta lejos de los l\u00edmites de las matrices, esto se puede usar para filtrar direcciones de la biblioteca.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0."
    }
  ],
  "id": "CVE-2020-26271",
  "lastModified": "2024-11-21T05:19:43.153",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 3.3,
          "baseSeverity": "LOW",
          "confidentialityImpact": "LOW",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T22:15:12.077",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0cc38aaa4064fd9e79101994ce9872c6d91f816b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q263-fvxm-m5mw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affeced versions during execution, `EinsumHelper::ParseEquation()` is supposed to set the flags in `input_has_ellipsis` vector and `*output_has_ellipsis` boolean to indicate whether there is ellipsis in the corresponding inputs and output. However, the code only changes these flags to `true` and never assigns `false`. This results in unitialized variable access if callers assume that `EinsumHelper::ParseEquation()` always sets these flags. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affeced versions during execution, `EinsumHelper::ParseEquation()` is supposed to set the flags in `input_has_ellipsis` vector and `*output_has_ellipsis` boolean to indicate whether there is ellipsis in the corresponding inputs and output. However, the code only changes these flags to `true` and never assigns `false`. This results in unitialized variable access if callers assume that `EinsumHelper::ParseEquation()` always sets these flags. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones anteriores, durante la ejecuci\u00f3n, \"EinsumHelper::ParseEquation()\" se supone que establece las banderas en el vector \"input_has_ellipsis\" y el booleano \"*output_has_ellipsis\" para indicar si se presenta elipsis en las entradas y salidas correspondientes. Sin embargo, el c\u00f3digo s\u00f3lo cambia estas banderas a \"true\" y nunca asigna \"false\". Esto resulta en un acceso a la variable unitialized si los que llaman asumen que \"EinsumHelper::ParseEquation()\" siempre establece estas banderas. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41201",
  "lastModified": "2024-11-21T06:25:45.507",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:08.097",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f09caa532b6e1ac8d2aa61b7832c78c5b79300c6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j86v-p27c-73fm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-10-21 21:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.4.0, when the `boxes` argument of `tf.image.crop_and_resize` has a very large value, the CPU kernel implementation receives it as a C++ `nan` floating point value. Attempting to operate on this is undefined behavior which later produces a segmentation fault. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "837BA051-B044-46A7-BCDF-81785C1E1FF9",
              "versionEndExcluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.4.0, when the `boxes` argument of `tf.image.crop_and_resize` has a very large value, the CPU kernel implementation receives it as a C++ `nan` floating point value. Attempting to operate on this is undefined behavior which later produces a segmentation fault. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a  2.4.0, cuando el argumento \"boxes\" de la funci\u00f3n \"tf.image.crop_and_resize\"  presenta un valor muy grande, la implementaci\u00f3n del kernel de la CPU lo recibe como un valor de punto flotante \"nan\" de C++.\u0026#xa0;Intentar operar sobre esto es un comportamiento indefinido que luego produce un fallo de segmentaci\u00f3n.\u0026#xa0;El problema est\u00e1 parcheado en eccb7ec454e6617738554a255d77f08e60ee0808 y TensorFlow 2.4.0 se publicar\u00e1 con el parche.\u0026#xa0;Los paquetes nocturnos de TensorFlow despu\u00e9s de esta confirmaci\u00f3n tambi\u00e9n resolver\u00e1n el problema"
    }
  ],
  "id": "CVE-2020-15266",
  "lastModified": "2024-11-21T05:05:13.900",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 3.7,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-10-21T21:15:12.350",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/42129"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/42129"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/42143/commits/3ade2efec2e90c6237de32a19680caaa3ebc2845"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xwhf-g6j5-j5gc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedRelu` or `QuantizedRelu6` are given nonscalar inputs for `min_features` or `max_features`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedRelu` or `QuantizedRelu6` are given nonscalar inputs for `min_features` or `max_features`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 49b3824d83af706df0ad07e4e677d88659756d89. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"QuantizedRelu\" o \"QuantizedRelu6\" reciben entradas no escalares para \"min_features\" o \"max_features\", es producido un fallo de segmento que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 49b3824d83af706df0ad07e4e677d88659756d89 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35979",
  "lastModified": "2024-11-21T07:12:06.053",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.117",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/49b3824d83af706df0ad07e4e677d88659756d89"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v7vw-577f-vp8x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 4419d10d576adefa36b0e0a9425d2569f7c0189f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 4419d10d576adefa36b0e0a9425d2569f7c0189f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"Unbatch\" recibe un \"id\" de entrada no escalar, da un fallo \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 4419d10d576adefa36b0e0a9425d2569f7c0189f de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36002",
  "lastModified": "2024-11-21T07:12:09.457",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.763",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mh3m-62v7-68xg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.StringNGrams` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) calls `reserve` on a `tstring` with a value that sometimes can be negative if user supplies negative `ngram_widths`. The `reserve` method calls `TF_TString_Reserve` which has an `unsigned long` argument for the size of the buffer. Hence, the implicit conversion transforms the negative value to a large integer. We have patched the issue in GitHub commit c283e542a3f422420cfdb332414543b62fc4e4a5. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n \"tf.raw_ops.StringNGrams\" es vulnerable a un problema de desbordamiento de enteros causado al convertir un valor entero con signo a uno sin signo y la posterior asignaci\u00f3n de memoria basada en este valor. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/string_ngrams_op.cc#L184) llama a \"reserve\" en una \"tstring\" con un valor que a veces puede ser negativo si el usuario proporciona \"ngram_widths\" negativo. El m\u00e9todo \"reserve\" llama a \"TF_TString_Reserve\" que presenta un argumento \"unsigned long\" para el tama\u00f1o del buffer. Por lo tanto, la conversi\u00f3n impl\u00edcita transforma el valor negativo en un entero grande. Hemos parcheado el problema en el commit de GitHub c283e542a3f422420cfdb332414543b62fc4e4a5. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37646",
  "lastModified": "2024-11-21T06:15:36.037",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:07.983",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c283e542a3f422420cfdb332414543b62fc4e4a5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6jh-7gv5-28vg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"tf.random.gamma\" recibe una forma y tasas de entrada grandes, da un fallo de \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36004",
  "lastModified": "2024-11-21T07:12:09.727",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.880",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mv8m-8x97-937q"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don\u0027t require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en todas las operaciones cwise binarias que no requieren difusi\u00f3n (por ejemplo, los gradientes de las operaciones cwise binarias). La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) asume que las dos entradas presentan exactamente el mismo n\u00famero de elementos pero no lo comprueba. Por lo tanto, cuando el functor eigen se ejecuta, desencadena lecturas OOB de la pila y un comportamiento indefinido debido a la vinculaci\u00f3n con nullptr. Hemos parcheado el problema en el commit 93f428fd1768df147171ed674fee1fc5ab8309ec de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37659",
  "lastModified": "2024-11-21T06:15:38.123",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.763",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/93f428fd1768df147171ed674fee1fc5ab8309ec"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q3g3-h9r4-prrc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `data_splits` argument of `tf.raw_ops.StringNGrams` lacks validation. This allows a user to pass values that can cause heap overflow errors and even leak contents of memory In the linked code snippet, all the binary strings after `ee ff` are contents from the memory stack. Since these can contain return addresses, this data leak can be used to defeat ASLR. The issue is patched in commit 0462de5b544ed4731aa2fb23946ac22c01856b80, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, el argumento \"data_splits\" de \"tf.raw_ops.StringNGrams\" carece de comprobaci\u00f3n.\u0026#xa0;Esto permite a un usuario pasar valores que pueden causar errores de desbordamiento de la pila e incluso filtrar el contenido de la memoria. En el fragmento de c\u00f3digo vinculado, todas las cadenas binarias despu\u00e9s de \"ee ff\" son contenidos desde la pila de memoria.\u0026#xa0;Dado que estos pueden contener direcciones de retorno, este filtrado de datos se puede utilizar para anular ASLR.\u0026#xa0;El problema es parcheado en el commit 0462de5b544ed4731aa2fb23946ac22c01856b80 y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15205",
  "lastModified": "2024-11-21T05:05:04.937",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "HIGH",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 7.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.0,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.823",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0462de5b544ed4731aa2fb23946ac22c01856b80"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g7p5-5759-qv46"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `tf.sparse.cross` receives an input `separator` that is not a scalar, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `tf.sparse.cross` receives an input `separator` that is not a scalar, it gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"tf.sparse.cross\" recibe un \"separador\" de entrada que no es un escalar, da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 83dcb4dbfa094e33db084e97c4d0531a559e0ebf de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35997",
  "lastModified": "2024-11-21T07:12:08.743",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.467",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/83dcb4dbfa094e33db084e97c4d0531a559e0ebf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p7hr-f446-x6qf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.EditDistance` has incomplete validation. Users can pass negative values to cause a segmentation fault based denial of service. In multiple places throughout the code, one may compute an index for a write operation. However, the existing validation only checks against the upper bound of the array. Hence, it is possible to write before the array by massaging the input to generate negative values for `loc`. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvrExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvrExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.EditDistance` has incomplete validation. Users can pass negative values to cause a segmentation fault based denial of service. In multiple places throughout the code, one may compute an index for a write operation. However, the existing validation only checks against the upper bound of the array. Hence, it is possible to write before the array by massaging the input to generate negative values for `loc`. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.EditDistance\" presenta una comprobaci\u00f3n incompleta. Los usuarios pueden pasar valores negativos para causar una denegaci\u00f3n de servicio basada en un fallo de segmentaci\u00f3n. En m\u00faltiples lugares a lo largo del c\u00f3digo, puede calcularse un \u00edndice para una operaci\u00f3n de escritura. Sin embargo, la comprobaci\u00f3n existente s\u00f3lo comprueba el l\u00edmite superior del array. Por lo tanto, es posible escribir antes de la matriz al masajear la entrada para generar valores negativos para \"loc\". Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29208",
  "lastModified": "2024-11-21T06:58:43.183",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:45.150",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/30721cf564cb029d34535446d6a5a6357bebc8e7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2r2f-g8mw-9gvr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de la pila que ocurra en la funci\u00f3n \"Conv2DBackpropFilter\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) calcula el tama\u00f1o del tensor de filtro que coincide pero no comprueba el n\u00famero de elementos en \"filter_sizes\".\u0026#xa0;M\u00e1s tarde, cuando leen y escriben este b\u00fafer, el c\u00f3digo usa el valor calculado aqu\u00ed, en lugar del n\u00famero de elementos en el tensor.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29540",
  "lastModified": "2024-11-21T06:01:20.413",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.443",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ConcatV2` can be used to trigger a denial of service attack via a segfault caused by a type confusion. The `axis` argument is translated into `concat_dim` in the `ConcatShapeHelper` helper function. Then, a value for `min_rank` is computed based on `concat_dim`. This is then used to validate that the `values` tensor has at least the required rank. However, `WithRankAtLeast` receives the lower bound as a 64-bits value and then compares it against the maximum 32-bits integer value that could be represented. Due to the fact that `min_rank` is a 32-bits value and the value of `axis`, the `rank` argument is a negative value, so the error check is bypassed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de la inferencia de formas para \"ConcatV2\" puede ser usada para desencadenar un ataque de denegaci\u00f3n de servicio por medio de un segfault causado por una confusi\u00f3n de tipos. El argumento \"axis\" es traducido en \"concat_dim\" en la funci\u00f3n de ayuda \"ConcatShapeHelper\". A continuaci\u00f3n, es calculado un valor para \"min_rank\" basado en \"concat_dim\". Este valor es usado para comprender que el tensor \"values\" presenta al menos el rango requerido. Sin embargo, \"WithRankAtLeast\" recibe el l\u00edmite inferior como un valor de 64 bits y luego lo compara con el valor entero m\u00e1ximo de 32 bits que podr\u00eda representarse. Debido a que \"min_rank\" es un valor de 32 bits y el valor de \"axis\", el argumento \"rank\" es un valor negativo, por lo que la comprobaci\u00f3n del error es omitida. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21731",
  "lastModified": "2025-05-05T17:17:49.390",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:07.873",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/common_shape_fns.cc#L1961-L2059"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.cc#L345-L358"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/08d7b00c0a5a20926363849f611729f53f3ec022"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m4hf-j54p-p353"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 13:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. Multiple operations in TensorFlow can be used to trigger a denial of service via `CHECK`-fails (i.e., assertion failures). This is similar to TFSA-2021-198 and has similar fixes. We have patched the reported issues in multiple GitHub commits. It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. Multiple operations in TensorFlow can be used to trigger a denial of service via `CHECK`-fails (i.e., assertion failures). This is similar to TFSA-2021-198 and has similar fixes. We have patched the reported issues in multiple GitHub commits. It is possible that other similar instances exist in TensorFlow, we will issue fixes as these are discovered. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. M\u00faltiples operaciones en TensorFlow pueden ser usadas para desencadenar una denegaci\u00f3n de servicio por medio de fallos de \"CHECK\" (es decir, fallos de aserci\u00f3n). Esto es similar a TFSA-2021-198 y presenta correcciones similares. Hemos parcheado los problemas reportados en varios commits de GitHub. Es posible que existan otros casos similares en TensorFlow, emitiremos correcciones a medida que sean detectadas. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23569",
  "lastModified": "2025-05-05T17:17:57.493",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T13:15:08.490",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qj5r-f9mv-rffh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-10-21 21:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "837BA051-B044-46A7-BCDF-81785C1E1FF9",
              "versionEndExcluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a  2.4.0, un atacante puede pasar un valor de \"axis\" no v\u00e1lido a la funci\u00f3n \"tf.quantization.quantize_and_dequantize\".\u0026#xa0;Esto resulta en el acceso a una dimensi\u00f3n fuera del rango del tensor de entrada en la implementaci\u00f3n del kernel de C++.\u0026#xa0;Sin embargo, dim_size solo hace un DCHECK para comprobar el argumento y luego lo usa para acceder al elemento correspondiente de una matriz.\u0026#xa0;Dado que en las compilaciones normales, las macros similares a \"DCHECK\" no son operativas, esto resulta en un fallo de segmentaci\u00f3n y un acceso fuera de los l\u00edmites de la matriz.\u0026#xa0;El problema est\u00e1 parcheado en eccb7ec454e6617738554a255d77f08e60ee0808 y TensorFlow versi\u00f3n 2.4.0 se publicar\u00e1 con el parche.\u0026#xa0;Los paquetes nocturnos de TensorFlow despu\u00e9s de esta confirmaci\u00f3n tambi\u00e9n resolver\u00e1n el problema"
    }
  ],
  "id": "CVE-2020-15265",
  "lastModified": "2024-11-21T05:05:13.733",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-10-21T21:15:12.257",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/42105"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/42105"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code behind `tf.function` API can be made to deadlock when two `tf.function` decorated Python functions are mutually recursive. This occurs due to using a non-reentrant `Lock` Python object. Loading any model which contains mutually recursive functions is vulnerable. An attacker can cause denial of service by causing users to load such models and calling a recursive `tf.function`, although this is not a frequent scenario. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the code behind `tf.function` API can be made to deadlock when two `tf.function` decorated Python functions are mutually recursive. This occurs due to using a non-reentrant `Lock` Python object. Loading any model which contains mutually recursive functions is vulnerable. An attacker can cause denial of service by causing users to load such models and calling a recursive `tf.function`, although this is not a frequent scenario. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo detr\u00e1s de la API \"tf.function\" puede llegar a bloquearse cuando dos funciones de Python decoradas con \"tf.function\" son recursivas entre s\u00ed. Esto ocurre debido a que es usado un objeto Python \"Lock\" no recursivo. La carga de cualquier modelo que contenga funciones mutuamente recursivas es vulnerable. Un atacante puede causar una denegaci\u00f3n de servicio al causar que usuarios carguen dichos modelos y llamen a una funci\u00f3n recursiva \"tf.function\", aunque esto no es un escenario frecuente. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41213",
  "lastModified": "2024-11-21T06:25:47.550",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.217",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/afac8158d43691661ad083f6dd9e56f327c1dcb7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h67m-xg8f-fxcf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-667"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-662"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service by exploiting a `CHECK`-failure coming from the implementation of `tf.raw_ops.RFFT`. Eigen code operating on an empty matrix can trigger on an assertion and will cause program termination. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio al explotar una fallo \"CHECK\" proveniente de la implementaci\u00f3n de \"tf.raw_ops.RFFT\".\u0026#xa0;El c\u00f3digo propio que opera en una matriz vac\u00eda puede desencadenar en una aserci\u00f3n y causar\u00e1 la terminaci\u00f3n del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29563",
  "lastModified": "2024-11-21T06:01:23.383",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.513",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/31bd5026304677faa8a0b77602c6154171b9aec1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-ph87-fvjr-v33w"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, las funciones de inferencia de forma para \"SparseCountSparseOutput\" pueden desencadenar una lectura fuera de l\u00edmites de la matriz asignada a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41210",
  "lastModified": "2024-11-21T06:25:47.020",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:08.160",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/701cfaca222a82afbeeb17496bd718baa65a67d2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m342-ff57-4jcc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow's Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow\u0027s Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, durante la fase del optimizador Grappler de TensorFlow, el plegado constante podr\u00eda intentar copiar en profundidad un tensor de recursos. Esto resulta en un segfault, ya que se supone que estos tensores no cambian. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a incluir este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n se ven afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41204",
  "lastModified": "2024-11-21T06:25:46.010",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.683",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7731e8dfbe4a56773be5dc94d631611211156659"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-786j-5qwq-r36x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the stride and window size are not positive for `tf.raw_ops.AvgPoolGrad`, it can give a floating point exception. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, if the stride and window size are not positive for `tf.raw_ops.AvgPoolGrad`, it can give a floating point exception. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25669",
  "lastModified": "2024-11-21T07:49:54.587",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.653",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1295ae4dbb52fe06b19733b0257e2340d7b63b8d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rcf8-g8jv-vg6p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-697"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadfPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadfPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SpaceToBatchND` (in all backends such as XLA and handwritten kernels) is vulnerable to an integer overflow: The result of this integer overflow is used to allocate the output tensor, hence we get a denial of service via a `CHECK`-failure (assertion failure), as in TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.SpaceToBatchND\" (en todos los backends como XLA y kernels manuscritos) es vulnerable a un desbordamiento de enteros: El resultado de este desbordamiento de enteros es usado para asignar el tensor de salida, por lo que es obtenido una denegaci\u00f3n de servicio por medio de un fallo de \"CHECK\" (fallo de aserci\u00f3n), como en TFSA-2021-198. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29203",
  "lastModified": "2024-11-21T06:58:42.410",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.543",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/acd56b8bcb72b163c834ae4f18469047b001fadf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjm6-4vf7-cjh4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions TensorFlow\u0027s Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas el optimizador Grappler de TensorFlow presenta un uso de variable unitializada. Si el vector \"train_nodes\" (obtenido del modelo guardado que se optimiza) no contiene un nodo \"Dequeue\", entonces \"dequeue_node\" queda sin inicializar. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41225",
  "lastModified": "2024-11-21T06:25:49.480",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.543",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/68867bf01239d9e1048f98cbad185bf4761bedd3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7r94-xv9v-63jw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"RandomPoissonV2\" recibe formas y tasas de entrada grandes, da un fallo de \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36003",
  "lastModified": "2024-11-21T07:12:09.590",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.823",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cv2p-32v3-vhwq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc's TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "C3684238-B1B8-4134-9FED-8A3733E1F39B",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "08DF9052-55EF-4B54-94C6-EC9B4FC87DE1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In `core/kernels/list_kernels.cc\u0027s TensorListReserve`, `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`. We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En \"core/kernels/list_kernels.cc\u0027s TensorListReserve\", se asume que \"num_elements\" es un tensor de tama\u00f1o 1. Cuando se proporciona un \"num_elements\" de m\u00e1s de 1 elemento, entonces \"tf.raw_ops.TensorListReserve\" falla el \"CHECK_EQ\" en \"CheckIsAlignedAndSingleElement\". Hemos parcheado el problema en el commit b5f6fbfba76576202b72119897561e3bd4f179c7 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35960",
  "lastModified": "2024-11-21T07:12:03.350",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.573",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The fix for CVE-2020-15209(https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) missed the case when the target shape of `Reshape` operator is given by the elements of a 1-D tensor. As such, the fix for the vulnerability(https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) allowed passing a null-buffer-backed tensor with a 1D shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La correcci\u00f3n para CVE-2020-15209 (https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209) pas\u00f3 por alto el caso cuando la forma objetivo del operador \"Reshape\" viene dada por los elementos de un tensor 1-D.\u0026#xa0;Como tal, la soluci\u00f3n para la vulnerabilidad (https://github.com/tensorflow/tensorflow/blob/9c1dc920d8ffb4893d6c9d27d1f039607b326743/tensorflow/lite/core/subgraph.cc#L1062-L1074) permiti\u00f3 pasar un tensor respaldado por un b\u00fafer null con un Forma 1D.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29592",
  "lastModified": "2024-11-21T06:01:26.950",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.070",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f8378920345f4f4604202d4ab15ef64b2aceaa16"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jjr8-m8g8-p6wv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.FusedBatchNorm`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) performs a division based on the last dimension of the `x` tensor. Since this is controlled by the user, an attacker can trigger a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio por medio de un error de tiempo de ejecuci\u00f3n de FPE en \"tf.raw_ops.FusedBatchNorm\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/828f346274841fa7505f7020e88ca36c22e557ab/tensorflow/core/kernels/fused_batch_norm_op.cc#L295-L297) realiza una divisi\u00f3n basada en una \u00faltima dimensi\u00f3n del tensor \"x\" .\u0026#xa0;Dado que esto est\u00e1 controlado por el usuario, un atacante puede desencadenar una denegaci\u00f3n de servicio.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29555",
  "lastModified": "2024-11-21T06:01:22.343",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.160",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1a2a87229d1d61e23a39373777c056161eb4084d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r35g-4525-29fq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 13:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `MapStage` is vulnerable a `CHECK`-fail if the key tensor is not a scalar. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"MapStage\" es vulnerable a un fallo \"CHECK\" si el tensor clave no es un escalar. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21734",
  "lastModified": "2025-05-05T17:17:49.747",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T13:15:08.190",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/map_stage_op.cc#L519-L550"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f57315566d7094f322b784947093406c2aea0d7d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gcvh-66ff-4mwm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `AvgPoolOp` function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `AvgPoolOp` function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"AvgPoolOp\" toma un argumento \"ksize\" que debe ser positivo pero no se comprueba. Un \"ksize\" negativo puede desencadenar un fallo de \"CHECK\" y bloquear el programa. Hemos parcheado el problema en el commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35941",
  "lastModified": "2024-11-21T07:12:00.817",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.377",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mgmh-g2v6-mqw5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls. For example, the `While` implementation(https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/while.cc) could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling the `Eval` function for the other and this quickly exhaust all stack space. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. Please consult our security guide(https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls. For example, the `While` implementation(https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/while.cc) could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling the `Eval` function for the other and this quickly exhaust all stack space. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. Please consult our security guide(https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Los gr\u00e1ficos TFlite no deben tener bucles entre nodos.\u0026#xa0;Sin embargo, esta condici\u00f3n no fue comprobada y un atacante podr\u00eda dise\u00f1ar modelos que dar\u00edan como resultado un bucle infinito durante la evaluaci\u00f3n.\u0026#xa0;En determinados casos, el bucle infinito ser\u00eda reemplazado por un desbordamiento de la pila debido a demasiadas llamadas recursivas.\u0026#xa0;Por ejemplo, la implementaci\u00f3n \"While\" (https://github.com/tensorflow/tensorflow/blob/106d8f4fb89335a2c52d7c895b7a7485465ca8d9/tensorflow/lite/kernels/ while.cc) podr\u00eda enga\u00f1arse en un argunto donde tanto el cuerpo como los subgrafos de bucle son lo mismo.\u0026#xa0;Evaluar uno de los subgrafos significa llamar a la funci\u00f3n \"Eval\" para el otro y esto agota r\u00e1pidamente todo el espacio de la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3,\u0026#xa0;TensorFlow 2.2.3 y TensorFlow 2.1.4, ya que tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango compatible.\u0026#xa0;Consulte nuestra gu\u00eda de seguridad (https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) para obtener m\u00e1s informaci\u00f3n sobre el modelo de seguridad y c\u00f3mo contactarnos con problemas y preguntas"
    }
  ],
  "id": "CVE-2021-29591",
  "lastModified": "2024-11-21T06:01:26.810",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.017",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9c1dc920d8ffb4893d6c9d27d1f039607b326743"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c6173f5fe66cdbab74f4f869311fe6aae2ba35f4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cwv3-863g-39vx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-835"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-674"
        },
        {
          "lang": "en",
          "value": "CWE-835"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.FractionalAvgPoolGrad\" es vulnerable a un desbordamiento de b\u00fafer de la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) no comprueba que los argumentos de la secuencia de agrupaci\u00f3n tengan suficientes elementos de retroceso como lo requiere el  tensor_prop\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29578",
  "lastModified": "2024-11-21T06:01:25.200",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.200",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ResizeNearestNeighborGrad` is given a large `size` input, it overflows. We have patched the issue in GitHub commit 00c821af032ba9e5f5fa3fe14690c8d28a657624. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.raw_ops.ResizeNearestNeighborGrad` is given a large `size` input, it overflows. We have patched the issue in GitHub commit 00c821af032ba9e5f5fa3fe14690c8d28a657624. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Cuando a `tf.raw_ops.ResizeNearestNeighborGrad` se le da una entrada de \u0027size\u0027 grande, se desborda. Hemos solucionado el problema en el commit de GitHub 00c821af032ba9e5f5fa3fe14690c8d28a657624. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41907",
  "lastModified": "2024-11-21T07:24:02.557",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:21.277",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/resize_nearest_neighbor_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/00c821af032ba9e5f5fa3fe14690c8d28a657624"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-368v-7v32-52fx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/resize_nearest_neighbor_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/00c821af032ba9e5f5fa3fe14690c8d28a657624"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-368v-7v32-52fx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. When printing a tensor, we get it's data as a `const char*` array (since that's the underlying storage) and then we typecast it to the element type. However, conversions from `char` to `bool` are undefined if the `char` is not `0` or `1`, so sanitizers/fuzzers will crash. The issue has been patched in GitHub commit `1be74370327`. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.10.1, TensorFlow 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When printing a tensor, we get it\u0027s data as a `const char*` array (since that\u0027s the underlying storage) and then we typecast it to the element type. However, conversions from `char` to `bool` are undefined if the `char` is not `0` or `1`, so sanitizers/fuzzers will crash. The issue has been patched in GitHub commit `1be74370327`. The fix will be included in TensorFlow 2.11.0. We will also cherrypick this commit on TensorFlow 2.10.1, TensorFlow 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Al imprimir un tensor, obtenemos sus datos como una matriz `const char*` (ya que ese es el almacenamiento subyacente) y luego los encasillamos al tipo de elemento. Sin embargo, las conversiones de `char` a `bool` no est\u00e1n definidas si `char` no es `0` o `1`, por lo que los sanitizadores/fuzzers fallar\u00e1n. El problema se solucion\u00f3 en el commit de GitHub `1be74370327`. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, TensorFlow 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41911",
  "lastModified": "2024-11-21T07:24:03.057",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:22.743",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/807cae8a807960fd7ac2313cde73a11fc15e7942/tensorflow/core/framework/tensor.cc#L1200-L1227"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1be743703279782a357adbf9b77dcb994fe8b508"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pf36-r9c6-h97j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/807cae8a807960fd7ac2313cde73a11fc15e7942/tensorflow/core/framework/tensor.cc#L1200-L1227"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1be743703279782a357adbf9b77dcb994fe8b508"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pf36-r9c6-h97j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-704"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un usuario malicioso podr\u00eda desencadenar una divisi\u00f3n por 0 en una implementaci\u00f3n de \"Conv3D\".\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) realiza una operaci\u00f3n de m\u00f3dulo basada en una entrada controlada por el usuario.\u0026#xa0;Por lo tanto, cuando \"filter\" presenta un 0 como quinto elemento, esto resulta en una divisi\u00f3n entre 0. Adem\u00e1s, si la forma de los dos tensores no es v\u00e1lida, puede ser desencadenada una aserci\u00f3n Eigen, resultando en un bloqueo del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29517",
  "lastModified": "2024-11-21T06:01:17.610",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.390",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `FractionMaxPoolGrad` is given outsize inputs `row_pooling_sequence` and `col_pooling_sequence`, TensorFlow will crash. We have patched the issue in GitHub commit d71090c3e5ca325bdf4b02eb236cfb3ee823e927. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `FractionMaxPoolGrad` is given outsize inputs `row_pooling_sequence` and `col_pooling_sequence`, TensorFlow will crash. We have patched the issue in GitHub commit d71090c3e5ca325bdf4b02eb236cfb3ee823e927. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `FractionMaxPoolGrad` se le dan entradas de gran tama\u00f1o `row_pooling_sequence` y `col_pooling_sequence`, TensorFlow fallar\u00e1. Hemos solucionado el problema en GitHub, en el commit d71090c3e5ca325bdf4b02eb236cfb3ee823e927. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n aplicaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41897",
  "lastModified": "2024-11-21T07:24:01.183",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:19.060",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/fractional_max_pool_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d71090c3e5ca325bdf4b02eb236cfb3ee823e927"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2w8-jw48-fr7j"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/fractional_max_pool_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d71090c3e5ca325bdf4b02eb236cfb3ee823e927"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2w8-jw48-fr7j"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-23 21:29
Modified
2024-11-21 04:14
Summary
Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local).
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "024764CC-98AC-4216-9AA8-2FBC65877C00",
              "versionEndIncluding": "1.7.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Google TensorFlow 1.7 and below is affected by: Buffer Overflow. The impact is: execute arbitrary code (local)."
    },
    {
      "lang": "es",
      "value": "Google TensorFlow, versi\u00f3n 1.7 y anteriores, se ve afectado por: Desbordamiento de b\u00fafer. El impacto es: ejecutar c\u00f3digo arbitrario (local)."
    }
  ],
  "id": "CVE-2018-8825",
  "lastModified": "2024-11-21T04:14:23.787",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-23T21:29:00.287",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-003.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.MapStage`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) does not check that the `key` input is a valid non-empty tensor. We have patched the issue in GitHub commit d7de67733925de196ec8863a33445b73f9562d1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo \"CHECK\" en \"tf.raw_ops.MapStage\".\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/map_stage_op.cc#L513) no comprueba que la entrada \"key\" sea un tensor v\u00e1lido no vac\u00edo.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub d7de67733925de196ec8863a33445b73f9562d1d.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37673",
  "lastModified": "2024-11-21T06:15:40.130",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.877",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d7de67733925de196ec8863a33445b73f9562d1d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-278g-rq84-9hmg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Missing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;una falta de comprobaci\u00f3n entre los argumentos de las operaciones \"tf.raw_ops.Conv3DBackprop*\" puede resultar en desbordamientos del b\u00fafer de la pila.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) asume que el \"input\",\" filter out_sizes\" y \" los tensores presentan una misma forma, ya que se accede a ellos en paralelo.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29520",
  "lastModified": "2024-11-21T06:01:17.963",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.523",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 12:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AddManySparseToTensorsMap` is vulnerable to an integer overflow which results in a `CHECK`-fail when building new `TensorShape` objects (so, an assert failure based denial of service). We are missing some validation on the shapes of the input tensors as well as directly constructing a large `TensorShape` with user-provided dimensions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"AddManySparseToTensorsMap\" es vulnerable a un desbordamiento de enteros que resulta en un fallo de \"CHECK\" cuando son construidos nuevos objetos \"TensorShape\" (por tanto, una denegaci\u00f3n de servicio basada en un fallo de assert). Nos falta algo de comprobaci\u00f3n en las formas de los tensores de entrada, as\u00ed como construir directamente un \"TensorShape\" grande con las dimensiones proporcionadas por el usuario. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23568",
  "lastModified": "2025-05-05T17:17:57.323",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T12:15:08.177",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/sparse_tensors_map_ops.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a68f68061e263a88321c104a6c911fe5598050a8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b51b82fe65ebace4475e3c54eb089c18a4403f1c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6445-fm66-fvq2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 11:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python's negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of shape inference for `ReverseSequence` does not fully validate the value of `batch_dim` and can result in a heap OOB read. There is a check to make sure the value of `batch_dim` does not go over the rank of the input, but there is no check for negative values. Negative dimensions are allowed in some cases to mimic Python\u0027s negative indexing (i.e., indexing from the end of the array), however if the value is too negative then the implementation of `Dim` would access elements before the start of an array. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de la inferencia de forma para \"ReverseSequence\" no comprueba completamente el valor de \"batch_dim\" y puede resultar en una lectura OOB del mont\u00f3n. Se presenta una comprobaci\u00f3n para asegurarse de que el valor de \"batch_dim\" no supera el rango de la entrada, pero no hay ninguna comprobaci\u00f3n para los valores negativos. Las dimensiones negativas son permitidas en algunos casos para imitar la indexaci\u00f3n negativa de Python (es decir, la indexaci\u00f3n desde el final del array), sin embargo si el valor es demasiado negativo entonces la implementaci\u00f3n de \"Dim\" acceder\u00eda a elementos antes del inicio de un array. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21728",
  "lastModified": "2025-05-05T17:17:48.900",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T11:15:08.020",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/framework/shape_inference.h#L415-L428"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/ops/array_ops.cc#L1636-L1671"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37c01fb5e25c3d80213060460196406c43d31995"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6gmv-pjp9-p8w8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.Reverse`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) performs a division based on the first dimension of the tensor argument. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio por medio de un error de tiempo de ejecuci\u00f3n de FPE en \"tf.raw_ops.Reverse\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/36229ea9e9451dac14a8b1f4711c435a1d84a594/tensorflow/core/kernels/reverse_op.cc#L75-L76) realiza una divisi\u00f3n basada en una primera dimensi\u00f3n del argumento del tensor.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29556",
  "lastModified": "2024-11-21T06:01:22.493",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.207",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4071d8e2f6c45c1955a811fee757ca2adbe462c1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fxqh-cfjm-fp93"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a null pointer dereference in the implementation of `tf.raw_ops.EditDistance`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) has incomplete validation of the input parameters. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una desreferencia de puntero null en una implementaci\u00f3n de \"tf.raw_ops.EditDistance\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/79865b542f9ffdc9caeb255631f7c56f1d4b6517/tensorflow/core/kernels/edit_distance_op.cc#L103-L159) presenta una comprobaci\u00f3n incompleta de los par\u00e1metros de entrada.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29564",
  "lastModified": "2024-11-21T06:01:23.503",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.557",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f4c364a5d6880557f6f5b6eb5cee2c407f0186b3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-75f6-78jr-4656"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a division by zero error in LSH [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). We have patched the issue in GitHub commit 0575b640091680cfb70f4dd93e70658de43b94f9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick thiscommit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede dise\u00f1ar un modelo TFLite que desencadenar\u00eda una divisi\u00f3n por error cero en LSH[implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/lsh_projection.cc#L118). Hemos solucionado el problema en el commit de GitHub 0575b640091680cfb70f4dd93e70658de43b94f9.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37691",
  "lastModified": "2024-11-21T06:15:42.840",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.870",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0575b640091680cfb70f4dd93e70658de43b94f9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27qf-jwm8-g7f3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a heap buffer overflow in TAvgPoolGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, there is a heap buffer overflow in TAvgPoolGrad. A fix is included in TensorFlow 2.12.0 and 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25664",
  "lastModified": "2024-11-21T07:49:53.967",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.367",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ddaac2bdd099bec5d7923dea45276a7558217e5b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6hg6-5c2q-7rcr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/43661Exploit, Issue Tracking, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/43661Exploit, Issue Tracking, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, algunos modelos TFLite creados con el convertidor de modelos TFLite eran bloqueados cuando eran cargados en el int\u00e9rprete TFLite. El culpable es que durante la cuantificaci\u00f3n la escala de los valores pod\u00eda ser mayor que 1 pero el c\u00f3digo siempre asum\u00eda una escala de subunidades. As\u00ed, como el c\u00f3digo llamaba a \"QuantizeMultiplierSmallerThanOneExp\", la aserci\u00f3n \"TFLITE_CHECK_LT\" era disparada y abortaba el proceso. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29212",
  "lastModified": "2024-11-21T06:58:43.800",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.720",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/43661"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a989426ee1346693cc015792f11d715f6944f2b8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/43661"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8wwm-6264-x792"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2cPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2cPatch, Third Party Advisory
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The Grappler optimizer in TensorFlow can be used to cause a denial of service by altering a `SavedModel` such that `IsSimplifiableReshape` would trigger `CHECK` failures. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. El optimizador Grappler en TensorFlow puede ser usado para causar una denegaci\u00f3n de servicio al alterar un \"SavedModel\" de tal manera que \"IsSimplifiableReshape\" dispare fallos de \"CHECK\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23581",
  "lastModified": "2024-11-21T06:48:51.650",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.713",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1687-L1742"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1fb27733f943295d874417630edd3b38b34ce082"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/240655511cd3e701155f944a972db71b6c0b1bb6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ebc1a2ffe5a7573d905e99bd0ee3568ee07c12c1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fq86-3f29-px2c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a denial of service via a FPE runtime error in `tf.raw_ops.SparseMatMul`. The division by 0 occurs deep in Eigen code because the `b` tensor is empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar una denegaci\u00f3n de servicio por medio de un error de tiempo de ejecuci\u00f3n de FPE en \"tf.raw_ops.SparseMatMul\".\u0026#xa0;La divisi\u00f3n por 0 ocurre en el c\u00f3digo Eigen porque el tensor \"b\" est\u00e1 vac\u00edo.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29557",
  "lastModified": "2024-11-21T06:01:22.630",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.247",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7f283ff806b2031f407db64c4d3edcda8fb9f9f5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xw93-v57j-fcgh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `Save` or `SaveSlices` is run over tensors of an unsupported `dtype`, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `Save` or `SaveSlices` is run over tensors of an unsupported `dtype`, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"Save\" o \"SaveSlices\" es ejecutado sobre tensores de un \"dtype\" no soportado, resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35983",
  "lastModified": "2024-11-21T07:12:06.647",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.303",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5dd7b86b84a864b834c6fa3d7f9f51c87efa99d4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m6vp-8q9j-whx4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB read on heap in the TFLite implementation of `Split_V`(https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the `SizeOfDimension` function(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h#L148-L150) will access data outside the bounds of the tensor shape array. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un modelo TFLite especialmente dise\u00f1ado podr\u00eda desencadenar una lectura OOB en la pila en la implementaci\u00f3n de TFLite de \"Split_V\" (https://github.com/tensorflow/tensorflow/blob/c59c37e7b2d563967da813fa50fe20b21f4da683/tensorflow/lite/kernels/split_v.cc#L99).\u0026#xa0;Si \"axis_value\" no es un valor entre 0 y \"NumDimensions (input)\", entonces la funci\u00f3n \"SizeOfDimension\" (https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/kernel_util.h # L148-L150) acceder\u00e1 a datos fuera de l\u00edmites de la matriz de forma de tensor.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29606",
  "lastModified": "2024-11-21T06:01:28.753",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.717",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ae2daeb45abfe2c6dda539cf8d0d6f653d3ef412"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h4pc-gx2w-f2xv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n de los kernels \"FusedBatchNorm\" es vulnerable a un acceso OOB a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41223",
  "lastModified": "2024-11-21T06:25:49.143",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.203",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/aab9998916c2ffbd8f0592059fad352622f89cda"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f54p-f6jp-4rhr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `Prepare` step of the `SpaceToDepth` TFLite operator does not check for 0 before division(https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc#L63-L67). An attacker can craft a model such that `params->block_size` would be zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The `Prepare` step of the `SpaceToDepth` TFLite operator does not check for 0 before division(https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc#L63-L67). An attacker can craft a model such that `params-\u003eblock_size` would be zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;El paso \"Prepare\" del operador TFLite \"SpaceToDepth\" no comprueba el 0 antes de la divisi\u00f3n (https://github.com/tensorflow/tensorflow/blob/5f7975d09eac0f10ed8a17dbb6f5964977725adc/tensorflow/lite/kernels/space_to_depth.cc )#L63-L .\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que \"params-)block_size\" sea cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29587",
  "lastModified": "2024-11-21T06:01:26.313",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.677",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j7rm-8ww4-xx2g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a denial of service by causing an out of memory allocation in the implementation of segment sum. Since code uses the last element of the tensor holding them to determine the dimensionality of output tensor, attackers can use a very large value to trigger a large allocation. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to limit the maximum value in the segment ids tensor. This only handles the case when the segment ids are stored statically in the model, but a similar validation could be done if the segment ids are generated at runtime, between inference steps. However, if the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
    },
    {
      "lang": "es",
      "value": "En TensorFlow Lite versiones anteriores a 2.2.1 y 2.3.1, los modelos que utilizan la suma de segmentos pueden desencadenar una denegaci\u00f3n de servicio al causar una asignaci\u00f3n de memoria insuficiente en la implementaci\u00f3n de la suma de segmentos. Dado que el c\u00f3digo usa el \u00faltimo elemento del tensor que los conserva para determinar la dimensionalidad del tensor de salida, los atacantes pueden usar un valor muy grande para desencadenar una gran asignaci\u00f3n. El problema es parcheado en el commit 204945b19e44b57906c9344c0d00120eeeae178a y es publicado en TensorFlow versiones 2.2.1 o 2.3.1. Una soluci\u00f3n alternativa potencial ser\u00eda agregar un \"Verifier\" personalizado para limitar el valor m\u00e1ximo en el tensor de los ids de segmento. Esto solo maneja el caso cuando los ids de segmento son almacenados est\u00e1ticamente en el modelo, pero se podr\u00eda realizar una comprobaci\u00f3n similar si los ids de segmento son generados en el tiempo de ejecuci\u00f3n, entre los pasos de inferencia. Sin embargo, si los ids de segmento son generados como salidas de un tensor durante los pasos de inferencia, entonces no existe una soluci\u00f3n posible y se recomienda a los usuarios actualizar al c\u00f3digo parcheado"
    }
  ],
  "id": "CVE-2020-15213",
  "lastModified": "2024-11-21T05:05:06.193",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.3,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.0,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.0,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.603",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hjmq-236j-8m87"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        },
        {
          "lang": "en",
          "value": "CWE-770"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-770"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions TensorFlow and Keras can be tricked to perform arbitrary code execution when deserializing a Keras model from YAML format. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) uses `yaml.unsafe_load` which can perform arbitrary code execution on the input. Given that YAML format support requires a significant amount of work, we have removed it for now. We have patched the issue in GitHub commit 23d6383eb6c14084a8fc3bdf164043b974818012. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, se puede enga\u00f1ar a TensorFlow y Keras para llevar a cabo una ejecuci\u00f3n de c\u00f3digo arbitrario al deserializar un modelo de Keras desde el formato YAML.\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/python/keras/saving/model_config.py#L66-L104) usa \"yaml.unsafe_load\" en la entrada.\u0026#xa0;Dado que la compatibilidad con el formato YAML requiere una gran cantidad de trabajo, lo hemos eliminado por ahora.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub 23d6383eb6c14084a8fc3bdf164043b974818012.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37678",
  "lastModified": "2024-11-21T06:15:40.923",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 9.3,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.5,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.0,
        "impactScore": 6.0,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:08.190",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r6jx-9g48-2r5r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-502"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToSparse`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) has an incomplete validation of the splits values: it does not check that they are in increasing order. We have patched the issue in GitHub commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en \"tf.raw_ops.RaggedTensorToSparse\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc#L30) presenta una comprobaci\u00f3n incompleta de los valores de separaci\u00f3n: no comprueba que est\u00e9n en orden creciente. Hemos parcheado el problema en el commit 1071f554dbd09f7e101324d366eec5f4fe5a3ece de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37656",
  "lastModified": "2024-11-21T06:15:37.650",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.467",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1071f554dbd09f7e101324d366eec5f4fe5a3ece"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4xfp-4pfp-89wg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 14:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `QuantizedMaxPool` has an undefined behavior where user controlled inputs can trigger a reference binding to null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `QuantizedMaxPool` has an undefined behavior where user controlled inputs can trigger a reference binding to null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"QuantizedMaxPool\" presenta un comportamiento indefinido en el que las entradas controladas por el usuario pueden desencadenar un enlace de referencia a un puntero null. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21739",
  "lastModified": "2025-05-05T17:17:50.887",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T14:15:08.510",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/quantized_pooling_ops.cc#L114-L130"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/53b0dd6dc5957652f35964af16b892ec9af4a559"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3mw4-6rj6-74g5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2025-01-15 17:15
Summary
TensorFlow is an open source platform for machine learning. If a list of quantized tensors is assigned to an attribute, the pywrap code fails to parse the tensor and returns a `nullptr`, which is not caught. An example can be seen in `tf.compat.v1.extract_volume_patches` by passing in quantized tensors as input `ksizes`. We have patched the issue in GitHub commit e9e95553e5411834d215e6770c81a83a3d0866ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If a list of quantized tensors is assigned to an attribute, the pywrap code fails to parse the tensor and returns a `nullptr`, which is not caught. An example can be seen in `tf.compat.v1.extract_volume_patches` by passing in quantized tensors as input `ksizes`. We have patched the issue in GitHub commit e9e95553e5411834d215e6770c81a83a3d0866ce. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si se asigna una lista de tensores cuantificados a un atributo, el c\u00f3digo pywrap no puede analizar el tensor y devuelve un \"nullptr\", que no se detecta. Se puede ver un ejemplo en `tf.compat.v1.extract_volume_patches` pasando tensores cuantificados como entrada `ksizes`. Hemos solucionado el problema en el commit de GitHub e9e95553e5411834d215e6770c81a83a3d0866ce. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41889",
  "lastModified": "2025-01-15T17:15:09.990",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:15.667",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e9e95553e5411834d215e6770c81a83a3d0866ce"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xxcj-rhqg-m46g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/image/generate_box_proposals_op.cu.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e9e95553e5411834d215e6770c81a83a3d0866ce"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xxcj-rhqg-m46g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.QuantizedConv2D`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) does a division by a quantity that is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede activar una divisi\u00f3n por 0 en \"tf.raw_ops.QuantizedConv2D\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/00e9a4d67d76703fa1aee33dac582acf317e0e81/tensorflow/core/kernels/quantized_conv_ops.cc#L257-L259) hace una divisi\u00f3n por una cantidad que es controlada por la persona que llama.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29527",
  "lastModified": "2024-11-21T06:01:18.820",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.850",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cfa91be9863a91d5105a3b4941096044ab32036b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x4g7-fvjj-prg8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit f3cf67ac5705f4f04721d15e485e192bb319feed. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"tf.quantization.fake_quant_with_min_max_vars_gradient\" recibe una entrada \"min\" o \"max\" que no es escalar, da un fallo de \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit f3cf67ac5705f4f04721d15e485e192bb319feed de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36005",
  "lastModified": "2024-11-21T07:12:09.893",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.937",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r26c-679w-mrjm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. There is a typo in TensorFlow's `SpecializeType` which results in heap OOB read/write. Due to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. There is a typo in TensorFlow\u0027s `SpecializeType` which results in heap OOB read/write. Due to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Se presenta un error tipogr\u00e1fico en \"SpecializeType\" de TensorFlow que resulta en la lectura/escritura de OOB de la pila. Debido a un error tipogr\u00e1fico, \"arg\" es inicializado al \"i\" argumento mutable en un bucle donde el \u00edndice del bucle es \"j\". Por lo tanto, es posible asignar a \"arg\" desde fuera del vector de argumentos. Como se trata de un valor mutable del proto, permite tanto leer como escribir en datos fuera de l\u00edmites. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, y TensorFlow versi\u00f3n 2.6.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23574",
  "lastModified": "2024-11-21T06:48:50.753",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.340",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims->data`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. A specially crafted TFLite model could trigger an OOB write on heap in the TFLite implementation of `ArgMin`/`ArgMax`(https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/kernels/arg_min_max.cc#L52-L59). If `axis_value` is not a value between 0 and `NumDimensions(input)`, then the condition in the `if` is never true, so code writes past the last valid element of `output_dims-\u003edata`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un modelo de TFLite especialmente dise\u00f1ado podr\u00eda desencadenar una escritura OOB en la pila en la implementaci\u00f3n de TFLite de \"ArgMin\"/\"ArgMax\" (https://github.com/tensorflow/tensorflow/blob/102b211d892f3abc14f845a72047809b39cc65ab/tensorflow/lite/minnel_max/arg_ # L52-L59).\u0026#xa0;Si \"axis_value\" no es un valor entre 0 y \"NumDimensions (input)\", entonces la condici\u00f3n en el \"if\" nunca es verdadera, por lo que el c\u00f3digo escribe m\u00e1s all\u00e1 del \u00faltimo elemento v\u00e1lido de \"output_dims-)data\".\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29603",
  "lastModified": "2024-11-21T06:01:28.367",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.577",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c59c37e7b2d563967da813fa50fe20b21f4da683"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-crch-j389-5f84"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The reference implementation of the `GatherNd` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966). An attacker can craft a model such that `params` input would be an empty tensor. In turn, `params_shape.Dims(.)` would be zero, in at least one dimension. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de referencia del operador TFLite \"GatherNd\" es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/0d45ea1ca641b21b73bcf9c00e0179cda284e7e7/tensorflow/lite/kernels/internal/reference/reference_ops.h#L966 ).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que la entrada de \"params\" sea un tensor vac\u00edo.\u0026#xa0;A su vez, la funci\u00f3n \"params_shape.Dims(.)\" ser\u00eda cero, en al menos una dimensi\u00f3n.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29589",
  "lastModified": "2024-11-21T06:01:26.560",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.770",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8e45822aa0b9f5df4b4c64f221e64dc930a70a9d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3w67-q784-6w7c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/55263Exploit, Issue Tracking, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/pull/55274Issue Tracking, Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28mExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/55263Exploit, Issue Tracking, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/pull/55274Issue Tracking, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28mExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the `tf.compat.v1.signal.rfft2d` and `tf.compat.v1.signal.rfft3d` lack input validation and under certain condition can result in crashes (due to `CHECK`-failures). Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, \"tf.compat.v1.signal.rfft2d\" y \"tf.compat.v1.signal.rfft3d\" carecen de comprobaci\u00f3n de entrada y, bajo determinadas condiciones, pueden provocar bloqueos (debido a fallos de \"CHECK\"). Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29213",
  "lastModified": "2024-11-21T06:58:43.957",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.787",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55263"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/55274"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0a8a781e597b18ead006d19b7d23d0a369e9ad73"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55263"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/55274"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5889-7v45-q28m"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 23:15
Modified
2024-11-21 05:19
Summary
In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CA3A54AC-E0F8-4741-8A80-04EEF746B14B",
              "versionEndExcluding": "1.15.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "989E4548-7823-436F-A9FE-04158ED41C48",
              "versionEndExcluding": "2.0.4",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "46417CA8-E666-4E12-B2A8-BB0E97D49BF4",
              "versionEndExcluding": "2.1.3",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "57B24744-0D81-41E9-9ED0-7296368DEF00",
              "versionEndExcluding": "2.2.2",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "DBEA56AF-3495-4883-9721-0FA9F08E7F6D",
              "versionEndExcluding": "2.3.2",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In affected versions of TensorFlow the tf.raw_ops.ImmutableConst operation returns a constant tensor created from a memory mapped file which is assumed immutable. However, if the type of the tensor is not an integral type, the operation crashes the Python interpreter as it tries to write to the memory area. If the file is too small, TensorFlow properly returns an error as the memory area has fewer bytes than what is needed for the tensor it creates. However, as soon as there are enough bytes, the above snippet causes a segmentation fault. This is because the allocator used to return the buffer data is not marked as returning an opaque handle since the needed virtual method is not overridden. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
    },
    {
      "lang": "es",
      "value": "En las versiones afectadas de TensorFlow, la operaci\u00f3n tf.raw_ops.ImmutableConst devuelve un tensor constante creado a partir de un archivo mapeado en memoria que se asume inmutable.\u0026#xa0;Sin embargo, si el tipo de tensor no es un tipo integral, la operaci\u00f3n bloquea el int\u00e9rprete de Python cuando intenta escribir en el \u00e1rea de la memoria.\u0026#xa0;Si el archivo es muy peque\u00f1o, TensorFlow devuelve apropiadamente un error ya que el \u00e1rea de la memoria posee menos bytes de los necesarios para el tensor que crea.\u0026#xa0;Sin embargo, tan pronto como haya suficientes bytes, el fragmento anterior causa un fallo de segmentaci\u00f3n.\u0026#xa0;Esto es debido a que el asignador usado para devolver los datos del b\u00fafer no est\u00e1 marcado como devolviendo un identificador opaco, ya que el m\u00e9todo virtual necesario no se anula.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0."
    }
  ],
  "id": "CVE-2020-26268",
  "lastModified": "2024-11-21T05:19:42.640",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T23:15:12.833",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c1e1fc899ad5f8c725dcbb6470069890b5060bc7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hhvc-g5hv-48c6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-471"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-Other"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `SparseAdd` results in allowing attackers to exploit undefined behavior (dereferencing null pointers) as well as write outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) has a large set of validation for the two sparse tensor inputs (6 tensors in total), but does not validate that the tensors are not empty or that the second dimension of `*_indices` matches the size of corresponding `*_shape`. This allows attackers to send tensor triples that represent invalid sparse tensors to abuse code assumptions that are not protected by validation. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Una comprobaci\u00f3n incompleta en \"SparseAdd\" resulta en que los atacantes puedan explotar el comportamiento indefinido (desreferenciar punteros nulls), as\u00ed como escribir fuera de l\u00edmites de los datos asignados a la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/656e7673b14acd7835dc778867f84916c6d1cac2/tensorflow/core/kernels/sparse_add_op.cc) presenta un gran conjunto de comprobaci\u00f3n para las dos entradas de tensor dispersas (6 tensores en total), pero no comprobar que los tensores no est\u00e9n vac\u00edos o que la segunda dimensi\u00f3n de \"*_indices\" coincida con el tama\u00f1o de \"*_shape\" correspondiente.\u0026#xa0;Esto permite a los atacantes enviar triples de tensor que representan tensores dispersos no comprobados para abusar de supuestos de c\u00f3digo que no est\u00e1n protegidos por comprobaci\u00f3n.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0. Tambi\u00e9n seleccionaremos este commits en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4, ya que tambi\u00e9n est\u00e1n afectadas y a\u00fan se encuentran en el rango compatible"
    }
  ],
  "id": "CVE-2021-29609",
  "lastModified": "2024-11-21T06:01:29.180",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 4.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.850",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/41727ff06111117bdf86b37db198217fd7a143cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fd02f44810754ae7481838b6a67c5df7f909ca3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cjc7-49v2-jp64"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-665"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `DrawBoundingBoxes` receives an input `boxes` that is not of dtype `float`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit da0d65cdc1270038e72157ba35bf74b85d9bda11. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `DrawBoundingBoxes` receives an input `boxes` that is not of dtype `float`, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit da0d65cdc1270038e72157ba35bf74b85d9bda11. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"DrawBoundingBoxes\" recibe una entrada \"boxes\" que no es de tipo \"float\", da un fallo \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit da0d65cdc1270038e72157ba35bf74b85d9bda11 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36001",
  "lastModified": "2024-11-21T07:12:09.320",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.707",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da0d65cdc1270038e72157ba35bf74b85d9bda11"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jqm7-m5q7-3hm5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 18:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a floating point exception in `tf.raw_ops.ResourceGather`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) computes the value of a value, `batch_size`, and then divides by it without checking that this value is not 0. We have patched the issue in GitHub commit ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a floating point exception in `tf.raw_ops.ResourceGather`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) computes the value of a value, `batch_size`, and then divides by it without checking that this value is not 0. We have patched the issue in GitHub commit ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede desencadenar un fallo por medio de una excepci\u00f3n de punto flotante en \"tf.raw_ops.ResourceGather\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L725-L731) calcula el valor de un valor, \"batch_size\", y luego lo divide por \u00e9l sin comprobar que este valor no sea 0. Hemos parcheado el problema en el commit de GitHub ac117ee8a8ea57b73d34665cdf00ef3303bc0b11. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37653",
  "lastModified": "2024-11-21T06:15:37.210",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T18:15:10.803",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ac117ee8a8ea57b73d34665cdf00ef3303bc0b11"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjj8-32p7-h289"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 14:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `*Bincount` operations allows malicious users to cause denial of service by passing in arguments which would trigger a `CHECK`-fail. There are several conditions that the input arguments must satisfy. Some are not caught during shape inference and others are not caught during kernel implementation. This results in `CHECK` failures later when the output tensors get allocated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `*Bincount` operations allows malicious users to cause denial of service by passing in arguments which would trigger a `CHECK`-fail. There are several conditions that the input arguments must satisfy. Some are not caught during shape inference and others are not caught during kernel implementation. This results in `CHECK` failures later when the output tensors get allocated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de las operaciones \"*Bincount\" permite a usuarios maliciosos causar una denegaci\u00f3n de servicio al pasar argumentos que desencadenen un fallo de \"CHECK\". Se presentan varias condiciones que los argumentos de entrada deben satisfacer. Algunas no son detectadas durante la inferencia de la forma y otras no son detectadas durante la implementaci\u00f3n del n\u00facleo. Esto resulta en fallos de \"CHECK\" m\u00e1s tarde, cuando son asignados los tensores de salida. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21737",
  "lastModified": "2025-05-05T17:17:50.487",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T14:15:08.363",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/bincount_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7019ce4f68925fd01cdafde26f8d8c938f47e6f9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f2vv-v9cg-qhh7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.Conv3DBackpropFilterV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate that the `filter_sizes` argument is a vector. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.ccThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4gExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.ccThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4gExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.Conv3DBackpropFilterV2` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code does not validate that the `filter_sizes` argument is a vector. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.Conv3DBackpropFilterV2\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo no comprueba que el argumento \"filter_sizes\" sea un vector. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29196",
  "lastModified": "2024-11-21T06:58:41.363",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.687",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/conv_grad_ops_3d.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/174c5096f303d5be7ed2ca2662b08371bff4ab88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5v77-j66x-4c4g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-1284"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVars` is given `min` or `max` tensors of a nonzero rank, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `FakeQuantWithMinMaxVars` is given `min` or `max` tensors of a nonzero rank, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"FakeQuantWithMinMaxVars\" le son dados tensores \"min\" o \"max\" de un rango distinto de cero, es producido un fallo de \"CHECK\" que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35971",
  "lastModified": "2024-11-21T07:12:04.940",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.360",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9fpg-838v-wpv7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can generate undefined behavior via a reference binding to nullptr in `BoostedTreesCalculateBestGainsPerFeature` and similar attack can occur in `BoostedTreesCalculateBestFeatureSplitV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) does not validate the input values. We have patched the issue in GitHub commit 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad and in commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede generar un comportamiento indefinido por medio de un enlace de referencia a nullptr en \"BoostedTreesCalculateBestGainsPerFeature\" y un ataque similar puede ocurrir en \"BoostedTreesCalculateBestFeatureSplitV2\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) no comprueba los valores de entrada. Hemos parcheado el problema en el commit de GitHub 9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad y en el commit 429f009d2b2c09028647dd4bb7b3f6f414bbaad7. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37662",
  "lastModified": "2024-11-21T06:15:38.553",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.967",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/429f009d2b2c09028647dd4bb7b3f6f414bbaad7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9c87c32c710d0b5b53dc6fd3bfde4046e1f7a5ad"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f5cx-5wr3-5qrc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. TensorFlow's type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "314D4EED-CA11-4FD5-9CE0-52608A69168E",
              "versionEndExcluding": "2.8.0",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. TensorFlow\u0027s type inference can cause a heap out of bounds read as the bounds checking is done in a `DCHECK` (which is a no-op during production). An attacker can control the `input_idx` variable such that `ix` would be larger than the number of values in `node_t.args`. The fix will be included in TensorFlow 2.8.0. This is the only affected version."
    },
    {
      "lang": "es",
      "value": "TensorFlow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La inferencia de tipos de TensorFlow puede causar una lectura fuera de los l\u00edmites de la pila, ya que la comprobaci\u00f3n de los l\u00edmites se realiza en un \"DCHECK\" (que es un no-op durante la producci\u00f3n). Un atacante puede controlar la variable \"input_idx\" de forma que \"ix\" sea mayor que el n\u00famero de valores en \"node_t.args\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Esta es la \u00fanica versi\u00f3n afectada"
    }
  ],
  "id": "CVE-2022-23592",
  "lastModified": "2024-11-21T06:48:53.127",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L223-L229"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq36-27g6-p492"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/274df9b02330b790aa8de1cee164b70f72b9b244/tensorflow/core/graph/graph.cc#L223-L229"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c99d98cd189839dcf51aee94e7437b54b31f8abd"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vq36-27g6-p492"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `AssignOp` can result in copying uninitialized data to a new tensor. This later results in undefined behavior. The implementation has a check that the left hand side of the assignment is initialized (to minimize number of allocations), but does not check that the right hand side is also initialized. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La implementaci\u00f3n de \"AssignOp\" puede resultar en la copia de datos no inicializados a un nuevo tensor. Esto luego resulta en un comportamiento indefinido. La implementaci\u00f3n presenta una comprobaci\u00f3n de que el lado izquierdo de la asignaci\u00f3n est\u00e1 inicializado (para minimizar el n\u00famero de asignaciones), pero no comprueba que el lado derecho tambi\u00e9n est\u00e1 inicializado. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23573",
  "lastModified": "2024-11-21T06:48:50.627",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.6,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.287",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/kernels/assign_op.h#L30-L143"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ef1d027be116f25e25bb94a60da491c2cf55bd0b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q85f-69q7-55h2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the async implementation of `CollectiveReduceV2` suffers from a memory leak and a use after free. This occurs due to the asynchronous computation and the fact that objects that have been `std::move()`d from are still accessed. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow 2.7.0
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the async implementation of `CollectiveReduceV2` suffers from a memory leak and a use after free. This occurs due to the asynchronous computation and the fact that objects that have been `std::move()`d from are still accessed. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n as\u00edncrona de \"CollectiveReduceV2\" sufre una perdida de memoria y un uso de memoria previamente liberada. Esto ocurre debido al c\u00e1lculo as\u00edncrono y al hecho de que se sigue accediendo a los objetos que han sido \"std::move()\"d. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.6.1, ya que esta versi\u00f3n es la \u00fanica que tambi\u00e9n est\u00e1 afectada"
    }
  ],
  "id": "CVE-2021-41220",
  "lastModified": "2024-11-21T06:25:48.677",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.350",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ca38dab9d3ee66c5de06f11af9a4b1200da5ef75"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gpfh-jvf9-7wg5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-416"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:11
Summary
TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming `input(0)`, `input(1)`, and `input(2)` to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of SobolSampleOp is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by assuming `input(0)`, `input(1)`, and `input(2)` to be scalar. This issue has been patched in GitHub commit c65c67f88ad770662e8f191269a907bf2b94b1bf. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de SobolSampleOp es vulnerable a una denegaci\u00f3n de servicio por medio de CHECK-failure (fallo de aserci\u00f3n) causado por asumir que \"input(0)\", \"input(1)\" y \"input(2)\" son escalares. Este problema ha sido corregido en el commit de GitHub c65c67f88ad770662e8f191269a907bf2b94b1bf. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35935",
  "lastModified": "2024-11-21T07:11:59.963",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.047",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c65c67f88ad770662e8f191269a907bf2b94b1bf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97p7-w86h-vcf9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. \"ParameterizedTruncatedNormal\" asume que \"shape\" es de tipo \"int32\". Una forma v\u00e1lida de tipo \"int64\" resulta en un fallo de tipo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 72180be03447a10810edca700cbc9af690dfeb51 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35984",
  "lastModified": "2024-11-21T07:12:06.790",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.367",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/72180be03447a10810edca700cbc9af690dfeb51"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2xf-8hgm-hpw5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 13:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. El estimador del coste de algunas operaciones de convoluci\u00f3n puede hacerse para ejecutar una divisi\u00f3n por 0. La funci\u00f3n no comprueba que el argumento stride sea estrictamente positivo. Por lo tanto, la correcci\u00f3n consiste en a\u00f1adir una comprobaci\u00f3n del argumento stride para asegurar que es v\u00e1lido. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21725",
  "lastModified": "2025-05-05T17:17:48.293",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T13:15:07.870",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/ffa202a17ab7a4a10182b746d230ea66f021fe16/tensorflow/core/grappler/costs/op_level_cost_estimator.cc#L189-L198"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3218043d6d3a019756607643cf65574fbfef5d7a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v3f7-j968-4h5f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 23:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0E596567-6F67-4880-8EC4-CB262BF02E0D",
              "versionEndExcluding": "2.4.4",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la funci\u00f3n de inferencia de formas para \"Transpose\" es vulnerable a un desbordamiento del b\u00fafer de la pila. Esto ocurre cuando \"perm\" contiene elementos negativos. La funci\u00f3n de inferencia de formas no comprueba que los \u00edndices de \"perm\" sean todos v\u00e1lidos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41216",
  "lastModified": "2024-11-21T06:25:48.050",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T23:15:08.287",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c79ba87153ee343401dbe9d1954d7f79e521eb14"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3ff2-r28g-w7h9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat<T>()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedReshape` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. However, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de la pila en la funci\u00f3n \"QuantizedReshape\" al pasar umbrales no comprobados para la cuantificaci\u00f3n.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/a324ac84e573fba362a5e53d4e74d5de6729933e/tensorflow/core/kernels/quantized_reshape_op.cc#L38-L55) asume que los 2 argumentos son siempre escalares v\u00e1lidos e intenta acceder al valor num\u00e9rico directamente.\u0026#xa0;Sin embargo, si alguno de estos tensores est\u00e1 vac\u00edo, entonces \".flat (T)()\" es un b\u00fafer vac\u00edo y acceder al elemento en una posici\u00f3n 0 resulta en un desbordamiento.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29536",
  "lastModified": "2024-11-21T06:01:19.947",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.260",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a324ac84e573fba362a5e53d4e74d5de6729933e"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2gfx-95x2-5v3x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that Grappler optimizer would attempt to build a tensor using a reference `dtype`. This would result in a crash due to a `CHECK`-fail in the `Tensor` constructor as reference types are not allowed. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un usuario malicioso puede causar una denegaci\u00f3n de servicio alterando un \"SavedModel\" de tal manera que el optimizador Grappler intente construir un tensor usando un \"dtype\" de referencia. Esto resultar\u00eda en un bloqueo debido a un fallo de \"CHECK\" en el constructor del \"Tensor\" ya que los tipos de referencia no est\u00e1n permitidos. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23588",
  "lastModified": "2024-11-21T06:48:52.583",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:15.087",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/tensor.cc#L733-L781"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/optimizers/constant_folding.cc#L1328-L1402"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6b5adc0877de832b2a7c189532dbbbc64622eeb6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fx5c-h9f6-rv7c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 18:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseDenseCwiseDiv` is vulnerable to a division by 0 error. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) uses a common class for all binary operations but fails to treat the division by 0 case separately. We have patched the issue in GitHub commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas la implementaci\u00f3n \"tf.raw_ops.SparseDenseCwiseDiv\" es vulnerable a un error de divisi\u00f3n por 0. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_dense_binary_op_shared.cc#L56) usa una clase com\u00fan para todas las operaciones binarias pero no trata el caso de la divisi\u00f3n por 0 por separado. Hemos parcheado el problema en el commit d9204be9f49520cdaaeb2541d1dc5187b23f31d9 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37636",
  "lastModified": "2024-11-21T06:15:34.550",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T18:15:10.377",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/d9204be9f49520cdaaeb2541d1dc5187b23f31d9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hp4c-x6r7-6555"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `Shard` API in TensorFlow expects the last argument to be a function taking two `int64` (i.e., `long long`) arguments. However, there are several places in TensorFlow where a lambda taking `int` or `int32` arguments is being used. In these cases, if the amount of work to be parallelized is large enough, integer truncation occurs. Depending on how the two arguments of the lambda are used, this can result in segfaults, read/write outside of heap allocated arrays, stack overflows, or data corruption. The issue is patched in commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 and ca8c013b5e97b1373b3bb1c97ea655e69f31a575, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, la API \"Shard\" en TensorFlow espera que el \u00faltimo argumento sea una funci\u00f3n que tome dos argumentos \"int64\" (es decir, \"long long\").\u0026#xa0;Sin embargo, existen varios lugares en TensorFlow donde se usa una lambda que toma argumentos \"int\" o \"int32\".\u0026#xa0;En estos casos, si la cantidad de trabajo que se va a paralelizar es lo suficientemente grande, se produce un truncamiento de enteros.\u0026#xa0;Dependiendo de c\u00f3mo sean usados los dos argumentos de la lambda, esto puede resultar en fallos de segmentaci\u00f3n, lectura y escritura fuera de las matrices asignadas a la pila, desbordamientos de pila o corrupci\u00f3n de datos.\u0026#xa0;El problema es parcheado en las commits 27b417360cbd671ef55915e4bb6bb06af8b8a832 y ca8c013b5e97b1373b3bb1c97ea655e69f31a575, y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15202",
  "lastModified": "2024-11-21T05:05:04.460",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.0,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.0,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 6.0,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.493",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/27b417360cbd671ef55915e4bb6bb06af8b8a832"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ca8c013b5e97b1373b3bb1c97ea655e69f31a575"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6fg-mjxg-hqq4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-197"
        },
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-Other"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n de \"SparseBinCount\" es vulnerable a un acceso OOB a la pila. Esto es debido a la falta de comprobaci\u00f3n entre los elementos del argumento \"values\" y la forma de la salida dispersa. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a incluir este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango admitido"
    }
  ],
  "id": "CVE-2021-41226",
  "lastModified": "2024-11-21T06:25:49.640",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.327",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f410212e373eb2aec4c9e60bf3702eba99a38aba"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-374m-jm66-3vj8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.MaxPoolGradWithArgmax\" puede causar una lectura fuera de l\u00edmites de los datos asignados a la pila si el atacante suministra entradas especialmente dise\u00f1adas.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) asume que el \u00faltimo elemento de la entrada \"boxes\" es 4, ya que por [la operaci\u00f3n] (https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2).\u0026#xa0;Dado que esto no es comprobado, los atacantes que pasan valores inferiores a 4 pueden escribir fuera de l\u00edmites de los objetos asignados a la pila y causar corrupci\u00f3n de la memoria.\u0026#xa0;Si la \u00faltima dimensi\u00f3n en \"boxes\" es menor que 4, accesos similares a\" tboxes (b, bb, 3) \"acceder\u00e1n a los datos fuera de l\u00edmites.\u0026#xa0;Adem\u00e1s, durante una ejecuci\u00f3n del c\u00f3digo, tambi\u00e9n son escritos estos \u00edndices.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29571",
  "lastModified": "2024-11-21T06:01:24.350",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 3.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.877",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `tf.raw_ops.Switch` operation takes as input a tensor and a boolean and outputs two tensors. Depending on the boolean value, one of the tensors is exactly the input tensor whereas the other one should be an empty tensor. However, the eager runtime traverses all tensors in the output. Since only one of the tensors is defined, the other one is `nullptr`, hence we are binding a reference to `nullptr`. This is undefined behavior and reported as an error if compiling with `-fsanitize=null`. In this case, this results in a segmentation fault The issue is patched in commit da8558533d925694483d2c136a9220d6d49d843c, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a las versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, la operaci\u00f3n \"tf.raw_ops.Switch\" toma como entrada un tensor y un booleano y genera dos tensores.\u0026#xa0;Dependiendo del valor booleano, uno de los tensores es exactamente el tensor de entrada mientras que el otro deber\u00eda ser un tensor vac\u00edo.\u0026#xa0;Sin embargo, el tiempo de ejecuci\u00f3n de eager salta todos los tensores en la salida.\u0026#xa0;Dado que solo se define uno de los tensores, el otro es \"nullptr\", por lo que vinculamos una referencia a \"nullptr\".\u0026#xa0;Este es un comportamiento indefinido y se reporta como un error si se compila con \"-fsanitize=null\".\u0026#xa0;En este caso, esto resulta en un fallo de segmentaci\u00f3n. El problema es parcheado en el commit da8558533d925694483d2c136a9220d6d49d843c, y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15190",
  "lastModified": "2024-11-21T05:05:02.547",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.337",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/da8558533d925694483d2c136a9220d6d49d843c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4g9f-63rx-5cw4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can craft a TFLite model that would cause a write outside of bounds of an array in TFLite. In fact, the attacker can override the linked list used by the memory allocator. This can be leveraged for an arbitrary write primitive under certain conditions. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede dise\u00f1ar un modelo de TFLite que cause una escritura fuera de l\u00edmites de un array en TFLite. De hecho, el atacante puede anular la lista enlazada usada por el asignador de memoria. Esto puede ser aprovechado para una escritura arbitraria primitiva bajo determinadas condiciones. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23561",
  "lastModified": "2024-11-21T06:48:49.027",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.793",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6c0b2b70eeee588591680f5b7d5d38175fd7cdf6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c78-vcq7-7vxq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.CTCGreedyDecoder`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) has a `CHECK_LT` inserted to validate some invariants. When this condition is false, the program aborts, instead of returning a valid error to the user. This abnormal termination can be weaponized in denial of service attacks. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de \"CHECK\" en \"tf.raw_ops.CTCGreedyDecoder\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/1615440b17b364b875eb06f43d087381f1460a65/tensorflow/core/kernels/ctc_decoder_ops.cc#L37-L50) presenta un \"CHECK_LT\" insertado para comprobar algunas invariantes.\u0026#xa0;Cuando esta condici\u00f3n es falsa, el programa aborta, en lugar de devolver un error v\u00e1lido al usuario.\u0026#xa0;Esta terminaci\u00f3n anormal puede ser usada como arma en ataques de denegaci\u00f3n de servicio.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29543",
  "lastModified": "2024-11-21T06:01:20.777",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.577",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ea3b43e98c32c97b35d52b4c66f9107452ca8fb2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fphq-gw9m-ghrv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that `TensorByteSize` would trigger `CHECK` failures. `TensorShape` constructor throws a `CHECK`-fail if shape is partial or has a number of elements that would overflow the size of an `int`. The `PartialTensorShape` constructor instead does not cause a `CHECK`-abort if the shape is partial, which is exactly what this function needs to be able to return `-1`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. A malicious user can cause a denial of service by altering a `SavedModel` such that `TensorByteSize` would trigger `CHECK` failures. `TensorShape` constructor throws a `CHECK`-fail if shape is partial or has a number of elements that would overflow the size of an `int`. The `PartialTensorShape` constructor instead does not cause a `CHECK`-abort if the shape is partial, which is exactly what this function needs to be able to return `-1`. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un usuario malicioso puede causar una denegaci\u00f3n de servicio alterando un \"SavedModel\" de forma que \"TensorByteSize\" desencadene fallos de \"CHECK\". El constructor \"TensorShape\" lanza un fallo de \"CHECK\" si la forma es parcial o presenta un n\u00famero de elementos que desborda el tama\u00f1o de un \"int\". El constructor \"PartialTensorShape\" en cambio no causa un \"CHECK\"-aborto si la forma es parcial, que es exactamente lo que esta funci\u00f3n necesita para poder devolver \"-1\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23582",
  "lastModified": "2024-11-21T06:48:51.790",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.767",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/attr_value_util.cc#L46-L50"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c2426bba00a01de6913738df8fa78e0215fcce02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4j82-5ccr-4r8v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedBiasAdd` is given `min_input`, `max_input`, `min_bias`, `max_bias` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedBiasAdd` is given `min_input`, `max_input`, `min_bias`, `max_bias` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"QuantizedBiasAdd\" le son dados los tensores \"min_input\", \"max_input\", \"min_bias\", \"max_bias\" de un rango distinto de cero, resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35972",
  "lastModified": "2024-11-21T07:12:05.080",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.427",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4pc4-m9mj-v2r9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.FractionalMaxPoolGrad` triggers an undefined behavior if one of the input tensors is empty. The code is also vulnerable to a denial of service attack as a `CHECK` condition becomes false and aborts the process. The implementation(https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) fails to validate that input and output tensors are not empty and are of the same rank. Each of these unchecked assumptions is responsible for the above issues. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.FractionalMaxPoolGrad\" desencadena un comportamiento indefinido si uno de los tensores de entrada est\u00e1 vac\u00edo.\u0026#xa0;El c\u00f3digo tambi\u00e9n es vulnerable a un ataque de denegaci\u00f3n de servicio, ya que una condici\u00f3n \"CHECK\" se vuelve falsa y aborta el proceso.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/169054888d50ce488dfde9ca55d91d6325efbd5b/tensorflow/core/kernels/fractional_max_pool_op.cc#L215) no comprueba que los tensores de entrada y salida no est\u00e1n vac\u00edos y presentan el mismo rango.\u0026#xa0;Cada una de estas suposiciones no comprobadas es responsable de los problemas anteriores.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29580",
  "lastModified": "2024-11-21T06:01:25.450",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.293",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/32fdcbff9d06d010d908fcc4bd4b36eb3ce15925"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x8h6-xgqx-jqgp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-908"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedAvgPool` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedAvgPool` is given `min_input` or `max_input` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"QuantizedAvgPool\" le son dados tensores \"min_input\" o \"max_input\" de un rango distinto de cero, es producido un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 7cdf9d4d2083b739ec81cfdace546b0c99f50622 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35966",
  "lastModified": "2024-11-21T07:12:04.203",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.033",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7cdf9d4d2083b739ec81cfdace546b0c99f50622"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4w68-4x85-mjj9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the process of building the control flow graph for a TensorFlow model is vulnerable to a null pointer exception when nodes that should be paired are not. This occurs because the code assumes that the first node in the pairing (e.g., an `Enter` node) always exists when encountering the second node (e.g., an `Exit` node). When this is not the case, `parent` is `nullptr` so dereferencing it causes a crash. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the process of building the control flow graph for a TensorFlow model is vulnerable to a null pointer exception when nodes that should be paired are not. This occurs because the code assumes that the first node in the pairing (e.g., an `Enter` node) always exists when encountering the second node (e.g., an `Exit` node). When this is not the case, `parent` is `nullptr` so dereferencing it causes a crash. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas el proceso de construcci\u00f3n del gr\u00e1fico de flujo de control para un modelo TensorFlow es vulnerable a una excepci\u00f3n de puntero null cuando los nodos que deber\u00edan estar emparejados no lo est\u00e1n. Esto ocurre porque el c\u00f3digo asume que el primer nodo en el emparejamiento (por ejemplo, un nodo \"Enter\") siempre se presenta cuando es encontrado el segundo nodo (por ejemplo, un nodo \"Exit\"). Cuando este no es el caso, \"parent\" es \"nullptr\", por lo que su desreferenciaci\u00f3n causa un fallo. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41217",
  "lastModified": "2024-11-21T06:25:48.203",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.073",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/05cbebd3c6bb8f517a158b0155debb8df79017ff"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5crj-c72x-m7gq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-21 00:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.hThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/issues/55530Exploit, Issue Tracking, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/pull/55730Exploit, Issue Tracking, Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcwExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.hThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/issues/55530Exploit, Issue Tracking, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/pull/55730Exploit, Issue Tracking, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcwExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the macros that TensorFlow uses for writing assertions (e.g., `CHECK_LT`, `CHECK_GT`, etc.) have an incorrect logic when comparing `size_t` and `int` values. Due to type conversion rules, several of the macros would trigger incorrectly. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, las macros que TensorFlow usa para escribir aserciones (por ejemplo, \"CHECK_LT\", \"CHECK_GT\", etc.) presentan una l\u00f3gica incorrecta cuando comparan valores \"size_t\" e \"int\". Debido a las reglas de conversi\u00f3n de tipos, varias de las macros eran desencadenadas incorrectamente. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29209",
  "lastModified": "2024-11-21T06:58:43.323",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-21T00:15:11.517",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55530"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/55730"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/platform/default/logging.h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b917181c29b50cb83399ba41f4d938dc369109a1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/55530"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Issue Tracking",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/55730"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4rr-5m7v-wxcw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-843"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) unconditionally dereferences a pointer. We have patched the issue in GitHub commit 15691e456c7dc9bd6be203b09765b063bf4a380c. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, un atacante puede dise\u00f1ar un modelo TFLite que podr\u00eda desencadenar una desreferencia de puntero null, que resultar\u00eda en un bloqueo y una denegaci\u00f3n de servicio. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/internal/optimized/optimized_ops.h#L268-L285) hace desreferencia incondicional a un puntero. Hemos parcheado el problema en el commit de GitHub 15691e456c7dc9bd6be203b09765b063bf4a380c. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37688",
  "lastModified": "2024-11-21T06:15:42.393",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:09.067",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/15691e456c7dc9bd6be203b09765b063bf4a380c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vcjj-9vg7-vf68"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The `RaggedRangOp` function takes an argument `limits` that is eventually used to construct a `TensorShape` as an `int64`. If `limits` is a very large float, it can overflow when converted to an `int64`. This triggers an `InvalidArgument` but also throws an abort signal that crashes the program. We have patched the issue in GitHub commit 37cefa91bee4eace55715eeef43720b958a01192. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The `RaggedRangOp` function takes an argument `limits` that is eventually used to construct a `TensorShape` as an `int64`. If `limits` is a very large float, it can overflow when converted to an `int64`. This triggers an `InvalidArgument` but also throws an abort signal that crashes the program. We have patched the issue in GitHub commit 37cefa91bee4eace55715eeef43720b958a01192. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La funci\u00f3n \"RaggedRangOp\" toma un argumento \"limits\" que es usada finalmente para construir un \"TensorShape\" como un \"int64\". Si \"limits\" es un flotador muy grande, puede desbordarse cuando es convertido en un \"int64\". Esto desencadena un \"InvalidArgument\" pero tambi\u00e9n lanza una se\u00f1al de interrupci\u00f3n que bloquea el programa. Hemos parcheado el problema en el commit 37cefa91bee4eace55715eeef43720b958a01192 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow 2.9.1, TensorFlow 2.8.1 y TensorFlow 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35940",
  "lastModified": "2024-11-21T07:12:00.667",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/0b6b491d21d6a4eb5fbab1cca565bc1e94ca9543/tensorflow/core/kernels/ragged_range_op.cc#L74-L88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/37cefa91bee4eace55715eeef43720b958a01192"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-x989-q2pq-4q5x"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::GraphDefImporter::ConvertNodeDef` tries to convert NodeDefs without an op name, it crashes. We have patched the issue in GitHub commit a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::GraphDefImporter::ConvertNodeDef` tries to convert NodeDefs without an op name, it crashes. We have patched the issue in GitHub commit a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"mlir::tfg::GraphDefImporter::ConvertNodeDef\" intenta convertir NodeDefs sin un nombre de operaci\u00f3n, se bloquea. Hemos parcheado el problema en el commit a0f0b9a21c9270930457095092f558fbad4c03e5 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36013",
  "lastModified": "2024-11-21T07:12:11.000",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.127",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828c-5j5q-vrjq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can force accesses outside the bounds of heap allocated arrays by passing in invalid tensor values to `tf.raw_ops.RaggedCross`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) lacks validation for the user supplied arguments. Each of the above branches call a helper function after accessing array elements via a `*_list[next_*]` pattern, followed by incrementing the `next_*` index. However, as there is no validation that the `next_*` values are in the valid range for the corresponding `*_list` arrays, this results in heap OOB reads. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede forzar accesos fuera de l\u00edmites de las matrices asignadas a la pila al pasar valores de tensor no comprobados a \"tf.raw_ops.RaggedCross\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/efea03b38fb8d3b81762237dc85e579cc5fc6e87/tensorflow/core/kernels/ragged_cross_op.cc#L456-L487) carece de comprobaci\u00f3n para los argumentos proporcionados por el usuario.\u0026#xa0;Cada una de las ramas anteriores llama a una funci\u00f3n auxiliar despu\u00e9s de acceder a los elementos de la matriz por medio de un patr\u00f3n \"* _list [next _ *]\", seguido de incrementar el \u00edndice \"next_ *\".\u0026#xa0;Sin embargo, como no hay comprobaci\u00f3n de que los valores \"next_ *\" est\u00e9n en el rango v\u00e1lido para las matrices \"* _list\" correspondientes, esto resulta en lecturas OOB de la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29532",
  "lastModified": "2024-11-21T06:01:19.450",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.073",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/44b7f486c0143f68b56c34e2d01e146ee445134a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j47f-4232-hvv8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor->is_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of SVDF in TFLite is [vulnerable to a null pointer error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). The [`GetVariableInput` function](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) can return a null pointer but `GetTensorData` assumes that the argument is always a valid tensor. Furthermore, because `GetVariableInput` calls [`GetMutableInput`](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) which might return `nullptr`, the `tensor-\u003eis_variable` expression can also trigger a null pointer exception. We have patched the issue in GitHub commit 5b048e87e4e55990dae6b547add4dae59f4e1c76. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas la implementaci\u00f3n SVDF en TFLite es [vulnerable a un error de puntero null](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/svdf.cc#L300-L313). La funci\u00f3n [\"GetVariableInput\"](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L115-L119) puede devolver un puntero null pero \"GetTensorData\" asume que el argumento es siempre un tensor v\u00e1lido. Adem\u00e1s, como \"GetVariableInput\" llama a [\"GetMutableInput\"](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/kernel_util.cc#L82-L90) que puede devolver \"nullptr\", la expresi\u00f3n \"tensor-)is_variable\" tambi\u00e9n puede desencadenar una excepci\u00f3n de puntero null. Hemos parcheado el problema en el commit 5b048e87e4e55990dae6b547add4dae59f4e1c76 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37681",
  "lastModified": "2024-11-21T06:15:41.377",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.867",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5b048e87e4e55990dae6b547add4dae59f4e1c76"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7xwj-5r4v-429p"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n operaciones de reducci\u00f3n dispersa en TensorFlow puede desencadenar accesos fuera de l\u00edmites de los datos asignados a la pila. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) presenta un fallo en comprobar que cada grupo de reducci\u00f3n no se desborde y que cada \u00edndice correspondiente no apunte fuera de l\u00edmites del tensor de entrada. Hemos parcheado el problema en el commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37635",
  "lastModified": "2024-11-21T06:15:34.390",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:07.577",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/87158f43f05f2720a374f3e6d22a7aaa3a33f750"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cgfm-62j4-v4rf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Due to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data. The implementation(https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Debido a una falta de comprobaci\u00f3n en la funci\u00f3n \"tf.raw_ops.Dequantize\", un atacante puede desencadenar una lectura desde fuera de l\u00edmites de los datos asignados a la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accede a los tensores \"min_range\" y \"max_range\" en paralelo pero no puede comprobar eso presentan una misma forma.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29582",
  "lastModified": "2024-11-21T06:01:25.697",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.390",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.AvgPool3DGrad` is vulnerable to a heap buffer overflow. The implementation(https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) assumes that the `orig_input_shape` and `grad` tensors have similar first and last dimensions but does not check that this assumption is validated. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.AvgPool3DGrad\" es vulnerable a un desbordamiento del b\u00fafer de la pila.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/d80ffba9702dc19d1fac74fc4b766b3fa1ee976b/tensorflow/core/kernels/pooling_ops_3d.cc#L376-L450) asume que las dimensiones al inicio y al final de los tensores \"orig_input_shape\" y \"grad\" son similares pero no comprueba que esta suposici\u00f3n est\u00e9 validada.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29577",
  "lastModified": "2024-11-21T06:01:25.077",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.153",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fc9141f42f6a72180ecd24021c3e6b36165fe0d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v6r6-84gr-92rm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Calling `tf.raw_ops.ImmutableConst`(https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) with a `dtype` of `tf.resource` or `tf.variant` results in a segfault in the implementation as code assumes that the tensor contents are pure scalars. We have patched the issue in 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 and will release TensorFlow 2.5.0 containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved. If using `tf.raw_ops.ImmutableConst` in code, you can prevent the segfault by inserting a filter for the `dtype` argument."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Llamar a \"tf.raw_ops.ImmutableConst\" (https://www.tensorflow.org/api_docs/python/tf/raw_ops/ImmutableConst) con un\" dtype\" de \"tf.resource\" o\" tf.variant\" resulta en un fallo de segmentaci\u00f3n en una implementaci\u00f3n como c\u00f3digo se asume que los contenidos del tensor son escalares puros.\u0026#xa0;Hemos parcheado el problema en 4f663d4b8f0bec1b48da6fa091a7d29609980fa4 y lanzaremos TensorFlow versi\u00f3n 2.5.0 que contiene el parche.\u0026#xa0;Los paquetes nocturnos de TensorFlow despu\u00e9s de este commit tambi\u00e9n resolver\u00e1n el problema.\u0026#xa0;Si usa \"tf.raw_ops.ImmutableConst\" en el c\u00f3digo, puede impedir el fallo de segmentaci\u00f3n al insertar un filtro para el argumento \"dtype\""
    }
  ],
  "id": "CVE-2021-29539",
  "lastModified": "2024-11-21T06:01:20.297",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.397",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4f663d4b8f0bec1b48da6fa091a7d29609980fa4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g4h2-gqm3-c9wq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede leer desde fuera de l\u00edmites de los datos asignados a la pila mediante el env\u00edo de argumentos ilegales especialmente dise\u00f1ados a \"tf.raw_ops.UpperBound\".\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) no comprueba el rango del argumento \"sorted_input\".\u0026#xa0;Un problema similar ocurre en \"tf.raw_ops.LowerBound\".\u0026#xa0;Hemos solucionado el problema en GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37670",
  "lastModified": "2024-11-21T06:15:39.707",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.693",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/42459e4273c2e47a3232cc16c4f4fff3b3a35c38"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9697-98pf-4rw7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:11
Summary
TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of tf.reshape op in TensorFlow is vulnerable to a denial of service via CHECK-failure (assertion failure) caused by overflowing the number of elements in a tensor. This issue has been patched in GitHub commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de tf.reshape op en TensorFlow es vulnerable a una denegaci\u00f3n de servicio por medio de CHECK-failure (fallo de aserci\u00f3n) causado por el desbordamiento del n\u00famero de elementos en un tensor. Este problema ha sido parcheado en el commit 61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35934",
  "lastModified": "2024-11-21T07:11:59.813",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:09.980",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/61f0f9b94df8c0411f0ad0ecc2fec2d3f3c33555"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f4w6-h4f5-wx45"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 18:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements. The [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0. We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of `tf.raw_ops.SparseReshape` can be made to trigger an integral division by 0 exception. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) calls the reshaping functor whenever there is at least an index in the input but does not check that shape of the input or the target shape have both a non-zero number of elements. The [reshape functor](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) blindly divides by the dimensions of the target shape. Hence, if this is not checked, code will result in a division by 0. We have patched the issue in GitHub commit 4923de56ec94fff7770df259ab7f2288a74feb41. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1 as this is the other affected version."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas se puede hacer que la implementaci\u00f3n \"tf.raw_ops.SparseReshape\" lance una excepci\u00f3n de divisi\u00f3n integral por 0. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L176-L181) llama al functor de remodelaci\u00f3n siempre que haya al menos un \u00edndice en la entrada, pero no comprueba que la forma de la entrada o la forma objetivo tengan ambas un n\u00famero de elementos distinto de cero. El [functor de remodelaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/reshape_util.cc#L40-L78) divide ciegamente por las dimensiones de la forma objetivo. Por lo tanto, si esto no es comprobado, el c\u00f3digo dar\u00e1 lugar a una divisi\u00f3n por 0. Hemos parcheado el problema en el commit 4923de56ec94fff7770df259ab7f2288a74feb41 de GitHub. La correcci\u00f3n se incluir\u00e1 en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n se incluir\u00e1 este commit en TensorFlow versi\u00f3n 2.5.1 ya que es la otra versi\u00f3n afectada."
    }
  ],
  "id": "CVE-2021-37640",
  "lastModified": "2024-11-21T06:15:35.137",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T18:15:10.490",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4923de56ec94fff7770df259ab7f2288a74feb41"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-95xm-g58g-3p88"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of fully connected layers in TFLite is [vulnerable to a division by zero error](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). We have patched the issue in GitHub commit 718721986aa137691ee23f03638867151f74935f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n de capas totalmente conectadas en TFLite es [vulnerable a un error de divisi\u00f3n por cero](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/lite/kernels/fully_connected.cc#L226). Hemos parcheado el problema en el commit 718721986aa137691ee23f03638867151f74935f de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37680",
  "lastModified": "2024-11-21T06:15:41.227",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.763",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/718721986aa137691ee23f03638867151f74935f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cfpj-3q4c-jhvr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.SdcaOptimizer` triggers undefined behavior due to dereferencing a null pointer. The implementation(https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) does not validate that the user supplied arguments satisfy all constraints expected by the op(https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer). The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"tf.raw_ops.SdcaOptimizer\" desencadena un comportamiento indefinido debido a una desreferenciaci\u00f3n de un puntero null.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/60a45c8b6192a4699f2e2709a2645a751d435cc3/tensorflow/core/kernels/sdca_internal.cc) no comprueba proporcionados por el usuario satisfagan todas las restricciones esperadas por la operaci\u00f3n (https://www.tensorflow.org/api_docs/python/tf/raw_ops/SdcaOptimizer)La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29572",
  "lastModified": "2024-11-21T06:01:24.470",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.927",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f7cc8755ac6683131fdfa7a8a121f9d7a9dec6fb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5gqf-456p-4836"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 20:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. The implementation of `AvgPool3DGradOp` does not fully validate the input `orig_input_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 9178ac9d6389bdc54638ab913ea0e419234d14eb. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "C3684238-B1B8-4134-9FED-8A3733E1F39B",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "08DF9052-55EF-4B54-94C6-EC9B4FC87DE1",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The implementation of `AvgPool3DGradOp` does not fully validate the input `orig_input_shape`. This results in an overflow that results in a `CHECK` failure which can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 9178ac9d6389bdc54638ab913ea0e419234d14eb. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. La implementaci\u00f3n de \"AvgPool3DGradOp\" no comprueba completamente la entrada \"orig_input_shape\". Esto resulta en un desbordamiento que resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 9178ac9d6389bdc54638ab913ea0e419234d14eb de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35959",
  "lastModified": "2024-11-21T07:12:03.213",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T20:15:10.510",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9178ac9d6389bdc54638ab913ea0e419234d14eb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wxjj-cgcx-r3vq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `SparseFillEmptyRowsGrad` is given empty inputs, TensorFlow will crash. We have patched the issue in GitHub commit af4a6a3c8b95022c351edae94560acc61253a1b8. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `SparseFillEmptyRowsGrad` is given empty inputs, TensorFlow will crash. We have patched the issue in GitHub commit af4a6a3c8b95022c351edae94560acc61253a1b8. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `SparseFillEmptyRowsGrad` se le dan entradas vac\u00edas, TensorFlow fallar\u00e1. Hemos solucionado el problema en Github, en el commit af4a6a3c8b95022c351edae94560acc61253a1b8. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n aplicaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41898",
  "lastModified": "2024-11-21T07:24:01.313",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:19.420",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse_fill_empty_rows_op_gpu.cu.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/af4a6a3c8b95022c351edae94560acc61253a1b8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hq7g-wwwp-q46h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse_fill_empty_rows_op_gpu.cu.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/af4a6a3c8b95022c351edae94560acc61253a1b8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hq7g-wwwp-q46h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-Other"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a null point error in QuantizedMatMulWithBiasAndDequantize with MKL enabled. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a null point error in QuantizedMatMulWithBiasAndDequantize with MKL enabled. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25670",
  "lastModified": "2024-11-21T07:49:54.710",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.710",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a47a39d9697969206d23a523c977238717e8727"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-49rq-hwc3-x77w"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-12-10 23:15
Modified
2024-11-21 05:19
Summary
In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CA3A54AC-E0F8-4741-8A80-04EEF746B14B",
              "versionEndExcluding": "1.15.5",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "989E4548-7823-436F-A9FE-04158ED41C48",
              "versionEndExcluding": "2.0.4",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "46417CA8-E666-4E12-B2A8-BB0E97D49BF4",
              "versionEndExcluding": "2.1.3",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "57B24744-0D81-41E9-9ED0-7296368DEF00",
              "versionEndExcluding": "2.2.2",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "DBEA56AF-3495-4883-9721-0FA9F08E7F6D",
              "versionEndExcluding": "2.3.2",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
    },
    {
      "lang": "es",
      "value": "En las versiones afectadas de TensorFlow que ejecutan un modelo LSTM/GRU donde la capa LSTM/GRU recibe una entrada con longitud cero, se produce un fallo de COMPROBACI\u00d3N cuando se usa el backend CUDA.\u0026#xa0;Esto puede resultar en una vulnerabilidad query-of-death, por medio de la denegaci\u00f3n de servicio, si los usuarios pueden controlar la entrada a la capa.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0."
    }
  ],
  "id": "CVE-2020-26270",
  "lastModified": "2024-11-21T05:19:42.983",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 4.4,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 3.3,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-12-10T23:15:12.973",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. TFLite's convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. TFLite\u0027s convolution code(https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) has multiple division where the divisor is controlled by the user and not checked to be non-zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;El c\u00f3digo de convoluci\u00f3n de TFLite (https://github.com/tensorflow/tensorflow/blob/09c73bca7d648e961dd05898292d91a8322a9d45/tensorflow/lite/kernels/conv.cc) presenta una divisi\u00f3n m\u00faltiple donde el usuario controla el divisor y no se comprueba que sea distinto de cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29594",
  "lastModified": "2024-11-21T06:01:27.200",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.160",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff489d95a9006be080ad14feb378f2b4dac35552"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3qgw-p4fm-x7gf"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of the `Split` TFLite operator is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65). An attacker can craft a model such that `num_splits` would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n del operador \"Split\" TFLite es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/e2752089ef7ce9bcf3db0ec618ebd23ea119d0c7/tensorflow/lite/kernels/split.cc#L63-L65).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que \"num_splits\" sea 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29599",
  "lastModified": "2024-11-21T06:01:27.860",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.400",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b22786e7e9b7bdb6a56936ff29cc7e9968d7bc1d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-97wf-p777-86jq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `TensorListScatter` and `TensorListScatterV2` receive an `element_shape` of a rank greater than one, they give a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `TensorListScatter` and `TensorListScatterV2` receive an `element_shape` of a rank greater than one, they give a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"TensorListScatter\" y \"TensorListScatterV2\" reciben un \"element_shape\" de rango superior a uno, dan un fallo de \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit bb03fdf4aae944ab2e4b35c7daa051068a8b7f61 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35991",
  "lastModified": "2024-11-21T07:12:07.883",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.100",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bb03fdf4aae944ab2e4b35c7daa051068a8b7f61"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vm7x-4qhj-rrcq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 21:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112Exploit, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112Exploit, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86Exploit, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "113B5FC0-ED39-4134-9722-A163B673E3EF",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.GetSessionTensor` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.GetSessionTensor\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29191",
  "lastModified": "2024-11-21T06:58:40.640",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T21:15:10.247",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/session_ops.cc#L94-L112"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/48305e8ffe5246d67570b64096a96f8e315a7281"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-fv25-wrff-wf86"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. TensorFlow is vulnerable to a heap OOB write in `Grappler`. The `set_output` function writes to an array at the specified index. Hence, this gives a malicious user a write primitive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. TensorFlow is vulnerable to a heap OOB write in `Grappler`. The `set_output` function writes to an array at the specified index. Hence, this gives a malicious user a write primitive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. TensorFlow es vulnerable a una escritura OOB de pila en \"Grappler\". La funci\u00f3n \"set_output\" escribe en un array en el \u00edndice especificado. Por lo tanto, esto da a un usuario malicioso una primitiva de escritura. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23566",
  "lastModified": "2024-11-21T06:48:49.680",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.060",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.h#L394"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/grappler/costs/graph_properties.cc#L1132-L1141"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/97282c6d0d34476b6ba033f961590b783fa184cd"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5qw5-89mw-wcg2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type `tf.raw_ops.MatrixSetDiagV*`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of `k` is a valid tensor. We have check that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. We have patched the issue in GitHub commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en todas las operaciones de tipo \"tf.raw_ops.MatrixSetDiagV*\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) presenta una comprobaci\u00f3n incompleta de que el valor de \"k\" es un tensor v\u00e1lido. Se comprueba que este valor es un escalar o un vector, pero no se comprueba el n\u00famero de elementos. Si se trata de un tensor vac\u00edo, el c\u00f3digo que accede al primer elemento del tensor es err\u00f3neo. Hemos parcheado el problema en el commit ff8894044dfae5568ecbf2ed514c1a37dc394f1b de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.5.1, TensorFlow 2.4.3 y TensorFlow 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37658",
  "lastModified": "2024-11-21T06:15:37.980",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.667",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ff8894044dfae5568ecbf2ed514c1a37dc394f1b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6p5r-g9mq-ggh2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `SetSize` receives an input `set_shape` that is not a 1D tensor, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit cf70b79d2662c0d3c6af74583641e345fc939467. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"SetSize\" recibe una entrada \"set_shape\" que no es un tensor 1D, da un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit de GitHub cf70b79d2662c0d3c6af74583641e345fc939467. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35993",
  "lastModified": "2024-11-21T07:12:08.177",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.227",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/cf70b79d2662c0d3c6af74583641e345fc939467"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wq6q-6m32-9rv9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The reference kernel of the `CONV_3D_TRANSPOSE` TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels \u003e output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter. We have patched the issue in GitHub commit 72c0bdcb25305b0b36842d746cc61d72658d2941. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. El n\u00facleo de referencia del operador `CONV_3D_TRANSPOSE` de TensorFlow Lite incrementa err\u00f3neamente data_ptr al agregar el sesgo al resultado. En lugar de `data_ptr += num_channels;` deber\u00eda ser `data_ptr += output_num_channels;` ya que si el n\u00famero de canales de entrada es diferente al n\u00famero de canales de salida, se devolver\u00e1 un resultado incorrecto y se producir\u00e1 un desbordamiento del b\u00fafer si num_channels \u0026gt; output_num_channels. Un atacante puede crear un modelo con un n\u00famero espec\u00edfico de canales de entrada. Entonces es posible escribir valores espec\u00edficos a trav\u00e9s del sesgo de la capa fuera de los l\u00edmites del b\u00fafer. Este ataque solo funciona si se utiliza el solucionador del n\u00facleo de referencia en el int\u00e9rprete. Hemos solucionado el problema en el compromiso de GitHub 72c0bdcb25305b0b36842d746cc61d72658d2941. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41894",
  "lastModified": "2024-11-21T07:24:00.780",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:17.523",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/72c0bdcb25305b0b36842d746cc61d72658d2941"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/72c0bdcb25305b0b36842d746cc61d72658d2941"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `tf.math.segment_*` operations results in a `CHECK`-fail related abort (and denial of service) if a segment id in `segment_ids` is large. This is similar to CVE-2021-29584 (and similar other reported vulnerabilities in TensorFlow, localized to specific APIs): the implementation (both on CPU and GPU) computes the output shape using `AddDim`. However, if the number of elements in the tensor overflows an `int64_t` value, `AddDim` results in a `CHECK` failure which provokes a `std::abort`. Instead, code should use `AddDimWithStatus`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n de las operaciones \"tf.math.segment_*\" resulta en un aborto relacionado con el fallo \"CHECK\" (y a una denegaci\u00f3n de servicio) si un id de segmento en \"segment_ids\" es grande. Esto es similar a CVE-2021-29584 (y otras vulnerabilidades similares reportadas en TensorFlow, localizadas en APIs espec\u00edficas): la implementaci\u00f3n (tanto en CPU como en GPU) computa la forma de salida usando \"AddDim\". Sin embargo, si el n\u00famero de elementos en el tensor sobrepasa un valor \"int64_t\", \"AddDim\" resulta en un fallo \"CHECK\" que provoca un \"std::abort\". En su lugar, el c\u00f3digo deber\u00eda usar \"AddDimWithStatus\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41195",
  "lastModified": "2024-11-21T06:25:44.497",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:07.707",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46888"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/51733"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e9c81c1e1a9cd8dd31f4e83676cab61b60658429"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46888"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/pull/51733"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cq76-mxrc-vchh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. The function `tf.raw_ops.LookupTableImportV2` cannot handle scalars in the `values` parameter and gives an NPE. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The function `tf.raw_ops.LookupTableImportV2` cannot handle scalars in the `values` parameter and gives an NPE. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25672",
  "lastModified": "2024-11-21T07:49:54.950",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.817",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/980b22536abcbbe1b4a5642fc940af33d8c19b69"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-94mm-g2mv-8p7r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-06-30 01:15
Modified
2024-11-21 06:12
Severity ?
Summary
TensorFlow through 2.5.0 allows attackers to overwrite arbitrary files via a crafted archive when tf.keras.utils.get_file is used with extract=True. NOTE: the vendor's position is that tf.keras.utils.get_file is not intended for untrusted archives
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "2988ABC1-B9B2-4142-9DE6-CB591813D2D4",
              "versionEndIncluding": "2.5.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [
    {
      "sourceIdentifier": "cve@mitre.org",
      "tags": [
        "disputed"
      ]
    }
  ],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow through 2.5.0 allows attackers to overwrite arbitrary files via a crafted archive when tf.keras.utils.get_file is used with extract=True. NOTE: the vendor\u0027s position is that tf.keras.utils.get_file is not intended for untrusted archives"
    },
    {
      "lang": "es",
      "value": "** EN DISPUTA ** TensorFlow versiones hasta 2.5.0, permite a atacantes sobrescribir archivos arbitrarios por medio de un archivo dise\u00f1ado cuando se usa la funci\u00f3n tf.keras.utils.get_file con  extract=True. NOTA: la posici\u00f3n del proveedor es que la funci\u00f3n tf.keras.utils.get_file no est\u00e1 pensado para archivos no confiables"
    }
  ],
  "id": "CVE-2021-35958",
  "lastModified": "2024-11-21T06:12:50.223",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.4,
          "confidentialityImpact": "NONE",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.1,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-06-30T01:15:07.033",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall"
    },
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md"
    },
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137"
    },
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://keras.io/api/"
    },
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://vuln.ryotak.me/advisories/52"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://docs.python.org/3/library/tarfile.html#tarfile.TarFile.extractall"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/README.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/b8cad4c631096a34461ff8a07840d5f4d123ce32/tensorflow/python/keras/utils/data_utils.py#L137"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://keras.io/api/"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://vuln.ryotak.me/advisories/52"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-22"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `mlir::tfg::TFOp::nameAttr` receives null type list attributes, it crashes. We have patched the issue in GitHub commits 3a754740d5414e362512ee981eefba41561a63a6 and a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `mlir::tfg::TFOp::nameAttr` receives null type list attributes, it crashes. We have patched the issue in GitHub commits 3a754740d5414e362512ee981eefba41561a63a6 and a0f0b9a21c9270930457095092f558fbad4c03e5. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"mlir::tfg::TFOp::nameAttr\" recibe atributos de lista de tipos nulos, se bloquea. Hemos corregido el problema en los commits de GitHub 3a754740d5414e362512ee981eefba41561a63a6 y a0f0b9a21c9270930457095092f558fbad4c03e5. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36014",
  "lastModified": "2024-11-21T07:12:11.140",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.187",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a754740d5414e362512ee981eefba41561a63a6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0f0b9a21c9270930457095092f558fbad4c03e5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7j3m-8g3c-9qqq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don\u0027t determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, si los argumentos \"tf.raw_ops.RaggedGather\" no determinan un tensor v\u00e1lido, el c\u00f3digo puede desencadenar una lectura desde fuera de l\u00edmites de los b\u00faferes asignados a la pila. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) lee directamente la primera dimensi\u00f3n de una forma tensorial antes de comprobar que dicho tensor presenta un rango de al menos 1 (es decir, no es un escalar). Adem\u00e1s, la implementaci\u00f3n no comprueba que la lista dada por \"params_nested_splits\" no sea una lista vac\u00eda de tensores. Hemos parcheado el problema en el commit de GitHub a2b743f6017d7b97af1fe49087ae15f0ac634373. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37641",
  "lastModified": "2024-11-21T06:15:35.280",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.3,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:07.670",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a denial of service in `boosted_trees_create_quantile_stream_resource` by using negative arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) does not validate that `num_streams` only contains non-negative numbers. In turn, [this results in using this value to allocate memory](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). However, `reserve` receives an unsigned integer so there is an implicit conversion from a negative value to a large positive unsigned. This results in a crash from the standard library. We have patched the issue in GitHub commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar una denegaci\u00f3n de servicio en \"boosted_trees_create_quantile_stream_resource\" usando argumentos negativos. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantile_ops.cc#L96) no comprueba que \"num_streams\" s\u00f3lo contenga n\u00fameros no negativos. A su vez, [esto resulta en usar este valor para asignar memoria](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/quantiles/quantile_stream_resource.h#L31-L40). Sin embargo, \"reserve\" recibe un entero sin signo, por lo que se presenta una conversi\u00f3n impl\u00edcita de un valor negativo a un grande positivo sin signo. Esto resulta en un bloqueo de la biblioteca est\u00e1ndar. Hemos parcheado el problema en el commit 8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37661",
  "lastModified": "2024-11-21T06:15:38.413",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.867",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a84f7a2b5a2b27ecf88d25bad9ac777cd2f7992"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gf88-j2mg-cc82"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2025-06-25 21:00
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pgExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.mdPatch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pgExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "CE10B125-2FB7-49F7-98A3-6358C25372FD",
              "versionEndExcluding": "2.6.4",
              "versionStartIncluding": "1.15.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.UnsortedSegmentJoin` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `num_segments` is a positive scalar but there is no validation. Since this value is used to allocate the output tensor, a negative value would result in a `CHECK`-failure (assertion failure), as per TFSA-2021-198. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.UnsortedSegmentJoin\" no comprobaba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo asume que \"num_segments\" es un escalar positivo, pero no lo comprueba. Dado que este valor es usado para asignar el tensor de salida, un valor negativo resulta en un fallo de \"CHECK\" (fallo de aserci\u00f3n), seg\u00fan TFSA-2021-198. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29204",
  "lastModified": "2025-06-25T21:00:03.170",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.610",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/unsorted_segment_join_op.cc#L83-L14"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2021-198.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/20cb18724b0bf6c09071a3f53434c4eec53cc147"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/84563f265f28b3c36a15335c8b005d405260e943"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hx9q-2mx4-m4pg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Analyzed",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-191"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 21:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizedInstanceNorm` is given `x_min` or `x_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"QuantizedInstanceNorm\" le son dados tensores \"x_min\" o \"x_max\" de un rango distinto de cero, resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35970",
  "lastModified": "2024-11-21T07:12:04.787",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T21:15:09.293",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g35r-369w-3fqp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2024-07-30 20:15
Modified
2024-11-21 08:06
Summary
TensorFlow is an end-to-end open source platform for machine learning. `array_ops.upper_bound` causes a segfault when not given a rank 2 tensor. The fix will be included in TensorFlow 2.13 and will also cherrypick this commit on TensorFlow 2.12.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "427C977C-1133-495D-B789-3B1C3F1BAB7F",
              "versionEndExcluding": "2.13.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. `array_ops.upper_bound` causes a segfault when not given a rank 2 tensor. The fix will be included in TensorFlow 2.13 and will also cherrypick this commit on TensorFlow 2.12."
    },
    {
      "lang": "es",
      "value": " TensorFlow es una plataforma de c\u00f3digo abierto de un extremo a otro para el aprendizaje autom\u00e1tico. `array_ops.upper_bound` provoca un error de segmentaci\u00f3n cuando no se le asigna un tensor de rango 2. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.13 y tambi\u00e9n seleccionar\u00e1 esta confirmaci\u00f3n en TensorFlow 2.12."
    }
  ],
  "id": "CVE-2023-33976",
  "lastModified": "2024-11-21T08:06:19.983",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2024-07-30T20:15:03.023",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6fa05df43b00038b048f4f0e51ef522da6532fec"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/915884fdf5df34aaedd00fc6ace33a2cfdefa586"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gjh7-xx4r-x345"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in `tf.raw_ops.SparseConcat`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) takes the values specified in `shapes[0]` as dimensions for the output shape. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un error \"CHECK\" en \"tf.raw_ops.SparseConcat\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/b432a38fe0e1b4b904a6c222cbce794c39703e87/tensorflow/core/kernels/sparse_concat_op.cc#L76) toma los valores especificados en \"formas [0]\" como dimensiones para la salida forma.\u0026#xa0;El constructor \"TensorShape\" (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) usa una operaci\u00f3n\" CHECK\" que se activa (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) : //github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) devuelve un estado no correcto.\u0026#xa0;Esta es una implementaci\u00f3n heredada del constructor y las operaciones deben usar \"BuildTensorShapeBase\" o\" AddDimWithStatus\" para evitar fallos de \"CHECK\" en presencia de desbordamientos.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29534",
  "lastModified": "2024-11-21T06:01:19.700",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.163",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/69c68ecbb24dff3fa0e46da0d16c821a2dd22d7c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6j9c-grc6-5m6g"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-754"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item->kernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. If a graph node is invalid, TensorFlow can leak memory in the implementation of `ImmutableExecutorState::Initialize`. Here, we set `item-\u003ekernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Si un nodo del grafo no es v\u00e1lido, TensorFlow puede perder memoria en la implementaci\u00f3n de \"ImmutableExecutorState::Initialize\". En este caso, establecemos \"item-)kernel\" como \"nullptr\" pero es un simple puntero \"OpKernel*\" por lo que la memoria que le fue asignada previamente ser\u00eda filtrada. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23578",
  "lastModified": "2024-11-21T06:48:51.230",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.553",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-401"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.Bincount` segfaults when given a parameter `weights` that is neither the same shape as parameter `arr` nor a length-0 tensor. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source machine learning platform. When running versions prior to 2.12.0 and 2.11.1 with XLA, `tf.raw_ops.Bincount` segfaults when given a parameter `weights` that is neither the same shape as parameter `arr` nor a length-0 tensor. A fix is included in TensorFlow 2.12.0 and 2.11.1."
    }
  ],
  "id": "CVE-2023-25675",
  "lastModified": "2024-11-21T07:49:55.310",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.997",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8ae76cf085f4be26295d2ecf2081e759e04b8acf"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7x4v-9gxg-9hwj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-697"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1."
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "EC688B44-17B7-462D-B6E3-BAAF99334782",
              "versionEndExcluding": "1.15.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B6271763-8DFA-4A8F-9596-F1148961ECC5",
              "versionEndExcluding": "2.0.3",
              "versionStartIncluding": "2.0.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "AA3FD62B-13CB-4EB5-939F-C848DE9AE071",
              "versionEndExcluding": "2.1.2",
              "versionStartIncluding": "2.1.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "029CB8A9-ED3D-486D-967C-4CE0AF8D8FAD",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*",
              "matchCriteriaId": "B617650A-B5A1-44BB-BB3A-2EF83648B100",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, the `SparseFillEmptyRowsGrad` implementation has incomplete validation of the shapes of its arguments. Although `reverse_index_map_t` and `grad_values_t` are accessed in a similar pattern, only `reverse_index_map_t` is validated to be of proper shape. Hence, malicious users can pass a bad `grad_values_t` to trigger an assertion failure in `vec`, causing denial of service in serving installations. The issue is patched in commit 390611e0d45c5793c7066110af37c8514e6a6c54, and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\""
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 1.15.4, 2.0.3, 2.1.2, 2.2.1 y 2.3.1, la implementaci\u00f3n de \"SparseFillEmptyRowsGrad\" presenta una comprobaci\u00f3n incompleta de las formas de sus argumentos.\u0026#xa0;Aunque se accede a \"reverse_index_map_t\" y \"grad_values_t\" con un patr\u00f3n similar, solo \"reverse_index_map_t\" se comprueba que tenga la forma adecuada.\u0026#xa0;Por lo tanto, los usuarios maliciosos pueden pasar un \"grad_values_t\" incorrecto para desencadenar un fallo de aserci\u00f3n en \"vec\", causando la denegaci\u00f3n de servicio en las instalaciones de servicio.\u0026#xa0;El problema es parcheado en el commit 390611e0d45c5793c7066110af37c8514e6a6c54 y es publicado en TensorFlow versiones 1.15.4, 2.0.3, 2.1.2, 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15194",
  "lastModified": "2024-11-21T05:05:03.193",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 5.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.683",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/390611e0d45c5793c7066110af37c8514e6a6c54"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9mqp-7v2h-2382"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a division by zero to occur in `Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) computes a divisor based on user provided data (i.e., the shape of the tensors given as arguments). If all shapes are empty then `work_unit_size` is 0. Since there is no check for this case before division, this results in a runtime exception, with potential to be abused for a denial of service. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar que una divisi\u00f3n por cero ocurra en la funci\u00f3n \"Conv2DBackpropFilter\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L513-L522) calcula un divisor basado en una forma de datos proporcionada por el usuario (es decir, los tensores dados como argumentos).\u0026#xa0;Si todas las formas est\u00e1n vac\u00edas, entonces \"work_unit_size\" es 0. Dado que no se presenta comprobaci\u00f3n para este caso anterior a la divisi\u00f3n, esto resulta en una excepci\u00f3n de tiempo de ejecuci\u00f3n, con potencial de que sea abusado por una denegaci\u00f3n de servicio.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29538",
  "lastModified": "2024-11-21T06:01:20.180",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.353",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j8qc-5fqr-52fp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. An attacker can trigger denial of service via assertion failure by altering a `SavedModel` on disk such that `AttrDef`s of some operation are duplicated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. An attacker can trigger denial of service via assertion failure by altering a `SavedModel` on disk such that `AttrDef`s of some operation are duplicated. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo de aserci\u00f3n al alterar un \"SavedModel\" en el disco de forma que se dupliquen los \"AttrDef\" de alguna operaci\u00f3n. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23565",
  "lastModified": "2024-11-21T06:48:49.540",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.007",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c2b31ff2d3151acb230edc3f5b1832d2c713a9e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4v5p-v5h9-6xjx"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `ctx->step_containter()` is a null ptr, the Lookup function will be executed with a null pointer. A fix is included in TensorFlow 2.12.0 and 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when `ctx-\u003estep_containter()` is a null ptr, the Lookup function will be executed with a null pointer. A fix is included in TensorFlow 2.12.0 and 2.11.1."
    }
  ],
  "id": "CVE-2023-25663",
  "lastModified": "2024-11-21T07:49:53.840",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.313",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/239139d2ae6a81ae9ba499ad78b56d9b2931538a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-64jg-wjww-7c5w"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `QuantizeAndDequantizeV3` is given a nonscalar `num_bits` input tensor, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"QuantizeAndDequantizeV3\" le es dado un tensor de entrada \"num_bits\" no escalar, es producido un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit f3f9cb38ecfe5a8a703f2c4a8fead434ef291713 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36026",
  "lastModified": "2024-11-21T07:12:12.807",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.953",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f3f9cb38ecfe5a8a703f2c4a8fead434ef291713"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9cr2-8pwr-fhfq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a Floating Point Exception in TensorListSplit with XLA. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a Floating Point Exception in TensorListSplit with XLA. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25673",
  "lastModified": "2024-11-21T07:49:55.063",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.873",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/728113a3be690facad6ce436660a0bc1858017fa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-647v-r7qq-24fh"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-697"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. If `BCast::ToShape` is given input larger than an `int32`, it will crash, despite being supposed to handle up to an `int64`. An example can be seen in `tf.experimental.numpy.outer` by passing in large input to the input `b`. We have patched the issue in GitHub commit 8310bf8dd188ff780e7fc53245058215a05bdbe5. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `BCast::ToShape` is given input larger than an `int32`, it will crash, despite being supposed to handle up to an `int64`. An example can be seen in `tf.experimental.numpy.outer` by passing in large input to the input `b`. We have patched the issue in GitHub commit 8310bf8dd188ff780e7fc53245058215a05bdbe5. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Si a `BCast::ToShape` se le da una entrada mayor que `int32`, se bloquear\u00e1, a pesar de que se supone que puede manejar hasta un `int64`. Se puede ver un ejemplo en `tf.experimental.numpy.outer` pasando una entrada grande a la entrada `b`. Hemos solucionado el problema en el commit de GitHub 8310bf8dd188ff780e7fc53245058215a05bdbe5. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41890",
  "lastModified": "2024-11-21T07:24:00.183",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:16.160",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/bcast.h"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8310bf8dd188ff780e7fc53245058215a05bdbe5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h246-cgh4-7475"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/bcast.h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8310bf8dd188ff780e7fc53245058215a05bdbe5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h246-cgh4-7475"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-704"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. When decoding a resource handle tensor from protobuf, a TensorFlow process can encounter cases where a `CHECK` assertion is invalidated based on user controlled arguments. This allows attackers to cause denial of services in TensorFlow processes. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. Cuando es decodificado un tensor de manejo de recursos desde protobuf, un proceso de TensorFlow puede encontrar casos en los que una aserci\u00f3n \"CHECK\" no es comprobada en base a argumentos controlados por el usuario. Esto permite a atacantes causar una denegaci\u00f3n de servicios en los procesos TensorFlow. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23564",
  "lastModified": "2024-11-21T06:48:49.417",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.953",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14fea662350e7c26eb5fe1be2ac31704e5682ee6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rcj-c8pj-v3m3"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a heap buffer overflow in `QuantizedResizeBilinear` by passing in invalid thresholds for the quantization. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) assumes that the 2 arguments are always valid scalars and tries to access the numeric value directly. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un desbordamiento del b\u00fafer de la pila en la funci\u00f3n \"QuantizedResizeBilinear\" al pasar umbrales no comprobados para la cuantificaci\u00f3n.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/50711818d2e61ccce012591eeb4fdf93a8496726/tensorflow/core/kernels/quantized_resize_bilinear_op.cc#L705-L706) asume que los 2 argumentos siempre son v\u00e1lidos para escalar e intentar acceder al valor num\u00e9rico directamente.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29537",
  "lastModified": "2024-11-21T06:01:20.060",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.307",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f6c40f0c6cbf00d46c7717a26419f2062f2f8694"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8c89-2vwr-chcq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixTriangularSolve`(https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.h#L160-L240) fails to terminate kernel execution if one validation condition fails. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \"MatrixTriangularSolve\" (https://github.com/tensorflow/tensorflow/blob/8cae746d8449c7dda5298327353d68613f16e798/tensorflow/core/kernels/linalg/matrix_triangular_solve_op_impl.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29551",
  "lastModified": "2024-11-21T06:01:21.823",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:13.023",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/480641e3599775a8895254ffbc0fc45621334f68"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vqw6-72r7-fgw7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. There is out-of-bounds access due to mismatched integer type sizes. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. There is out-of-bounds access due to mismatched integer type sizes. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25671",
  "lastModified": "2024-11-21T07:49:54.827",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.760",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/2eedc8f676d2c3b8be9492e547b2bc814c10b367"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/760322a71ac9033e122ef1f4b1c62813021e5938"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j5w9-hmfh-4cr6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"Requantize\" le son dados los tensores \"input_min\", \"input_max\", \"requested_output_min\", \"requested_output_max\" de un rango distinto de cero, resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 785d67a78a1d533759fcd2f5e8d6ef778de849e0 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-36017",
  "lastModified": "2024-11-21T07:12:11.560",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:11.367",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wqmc-pm8c-2jhc"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si a \"LRNGrad\" le es dado un tensor de entrada \"output_image\" que no es 4-D, es producido un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35985",
  "lastModified": "2024-11-21T07:12:06.953",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.427",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9942-r22v-78cp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `GetInitOp` is vulnerable to a crash caused by dereferencing a null pointer. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. La implementaci\u00f3n de \"GetInitOp\" es vulnerable a un bloqueo causado por una desreferencia de un puntero null. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-23577",
  "lastModified": "2024-11-21T06:48:51.110",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:14.497",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/cc/saved_model/loader_util.cc#L31-L61"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4f38b1ac8e42727e18a2f0bde06d3bee8e77b250"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8cxv-76p7-jxwr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 11:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. The implementation of `Dequantize` does not fully validate the value of `axis` and can result in heap OOB accesses. The `axis` argument can be `-1` (the default value for the optional argument) or any other positive value at most the number of dimensions of the input. Unfortunately, the upper bound is not checked and this results in reading past the end of the array containing the dimensions of the input tensor. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. La implementaci\u00f3n de \"Dequantize\" no comprueba completamente el valor de \"axis\" y puede resultar en accesos OOB a la pila. El argumento \"axis\" puede ser \"-1\" (el valor por defecto para el argumento opcional) o cualquier otro valor positivo como m\u00e1ximo el n\u00famero de dimensiones de la entrada. Desgraciadamente, el l\u00edmite superior no es comprobado y esto hace que es le\u00eddo m\u00e1s all\u00e1 del final del array que contiene las dimensiones del tensor de entrada. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21726",
  "lastModified": "2025-05-05T17:17:48.530",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T11:15:07.810",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/core/kernels/dequantize_op.cc#L92-L153"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/23968a8bf65b009120c43b5ebcceaf52dbc9e943"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-23hm-7w47-xw72"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n \"tf.raw_ops.FractionalAvgPoolGrad\" puede ser enga\u00f1ada para acceder a datos fuera de l\u00edmites de los b\u00faferes asignados a la pila. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) no comprueba que el tensor de entrada no est\u00e9 vac\u00edo. As\u00ed, el c\u00f3digo construye un \"EigenDoubleMatrixMap\" vac\u00edo y luego accede a este buffer con \u00edndices que est\u00e1n fuera del \u00e1rea vac\u00eda. Hemos parcheado el problema en el commit 0f931751fb20f565c4e94aa6df58d54a003cdb30 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37651",
  "lastModified": "2024-11-21T06:15:36.860",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.170",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in `tf.raw_ops.RaggedTensorToVariant`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) has an incomplete validation of the splits values, missing the case when the argument would be empty. We have patched the issue in GitHub commit be7a4de6adfbd303ce08be4332554dff70362612. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas un atacante puede causar un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a un puntero null en \"tf.raw_ops.RaggedTensorToVariant\". La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc#L129) presenta una comprobaci\u00f3n incompleta de los valores de divisi\u00f3n, omitiendo el caso cuando el argumento estar\u00eda vac\u00edo. Hemos parcheado el problema en el commit be7a4de6adfbd303ce08be4332554dff70362612 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37666",
  "lastModified": "2024-11-21T06:15:39.140",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.243",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/be7a4de6adfbd303ce08be4332554dff70362612"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-w4xf-2pqw-5mq7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-824"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-13 00:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas cuando se ejecutan funciones de forma, algunas funciones (como \"MutableHashTableShape\") producen informaci\u00f3n de salida adicional en forma de una estructura\" ShapeAndType\".\u0026#xa0;Las formas insertadas en esta estructura pertenecen a un contexto de inferencia que se limpia casi de inmediato;\u0026#xa0;si el c\u00f3digo ascendente intenta acceder a esta informaci\u00f3n de forma, puede desencadenar un fallo de segmento.\u0026#xa0;\"ShapeRefiner\" est\u00e1 mitigando esto para las formas de salida normales al clonarlas (y as\u00ed poner la forma reci\u00e9n creada bajo la propiedad de un contexto de inferencia que no morir\u00e1), pero no est\u00e1bamos haciendo lo mismo para las formas y los tipos.\u0026#xa0;Este commit corrige eso al hacer una l\u00f3gica similar en formas y tipos de salida.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub ee119d4a498979525046fba1c3dd3f13a039fbb1.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37690",
  "lastModified": "2024-11-21T06:15:42.697",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 6.6,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 4.7,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 6.6,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 4.7,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-13T00:15:07.170",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-416"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2019-04-24 17:29
Modified
2024-11-21 04:12
Summary
Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory.
Impacted products
Vendor Product Version
google snappy 1.1.4
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:snappy:1.1.4:*:*:*:*:*:*:*",
              "matchCriteriaId": "162BFB05-7AF0-4534-B640-167D64F77F5D",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A671E967-1258-4385-AE5F-B77F252E1DE5",
              "versionEndExcluding": "1.7.1",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Memcpy parameter overlap in Google Snappy library 1.1.4, as used in Google TensorFlow before 1.7.1, could result in a crash or read from other parts of process memory."
    },
    {
      "lang": "es",
      "value": "La superposici\u00f3n de par\u00e1metros de Memcpy en la libreria Google Snappy versi\u00f3n 1.1.4, tal y como se utilizaba en Google TensorFlow en las versiones anteriores a la 1.7.1, puede provocar un cierre inesperado o una lectura de otras partes de la memoria de proceso."
    }
  ],
  "id": "CVE-2018-7577",
  "lastModified": "2024-11-21T04:12:24.207",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": true
      }
    ],
    "cvssMetricV30": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:H",
          "version": "3.0"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2019-04-24T17:29:00.333",
  "references": [
    {
      "source": "cve@mitre.org",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/security/advisory/tfsa-2018-005.md"
    }
  ],
  "sourceIdentifier": "cve@mitre.org",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. If `SparseBincount` is given inputs for `indices`, `values`, and `dense_shape` that do not make a valid sparse tensor, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \"SparseBincount\" recibe entradas para \"indices\", \"values\" y \"dense_shape\" que no forman un tensor disperso v\u00e1lido, resulta en un segfault que puede usarse para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 40adbe4dd15b582b0210dfbf40c243a62f5119fa de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35982",
  "lastModified": "2024-11-21T07:12:06.497",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.243",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/40adbe4dd15b582b0210dfbf40c243a62f5119fa"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-397c-5g2j-qxpv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "NVD-CWE-noinfo"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Incomplete validation in `tf.raw_ops.CTCLoss` allows an attacker to trigger an OOB read from heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick these commits on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Una comprobaci\u00f3n incompleta en \"tf.raw_ops.CTCLoss\" permite a un atacante desencadenar una lectura OOB de la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commits en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4, ya que tambi\u00e9n est\u00e1n afectadas y a\u00fan se encuentran en el rango compatible"
    }
  ],
  "id": "CVE-2021-29613",
  "lastModified": "2024-11-21T06:01:29.693",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 6.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.037",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/14607c0707040d775e06b6817325640cb4b5864c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4504a081af71514bb1828048363e6540f797005b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vvg4-vgrv-xfr7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-665"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.ExperimentalDatasetToTFRecord` and `tf.raw_ops.DatasetToTFRecord` can trigger heap buffer overflow and segmentation fault. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) assumes that all records in the dataset are of string type. However, there is no check for that, and the example given above uses numeric types. We have patched the issue in GitHub commit e0b6e58c328059829c3eb968136f17aa72b6c876. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n para \"tf.raw_ops.ExperimentalDatasetToTFRecord\" y \"tf.raw_ops.DatasetToTFRecord\" puede desencadenar un desbordamiento del buffer de la pila y un fallo de segmentaci\u00f3n. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/data/experimental/to_tf_record_op.cc#L93-L102) asume que todos los registros del conjunto de datos son de tipo cadena. Sin embargo, no hay ninguna comprobaci\u00f3n al respecto, y el ejemplo anterior usa tipos num\u00e9ricos. Hemos parcheado el problema en el commit e0b6e58c328059829c3eb968136f17aa72b6c876 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37650",
  "lastModified": "2024-11-21T06:15:36.703",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:08.077",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e0b6e58c328059829c3eb968136f17aa72b6c876"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f8h4-7rgh-q2gm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. `FractionalMaxPoolGrad` validates its inputs with `CHECK` failures instead of with returning errors. If it gets incorrectly sized inputs, the `CHECK` failure can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 8741e57d163a079db05a7107a7609af70931def4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. `FractionalMaxPoolGrad` validates its inputs with `CHECK` failures instead of with returning errors. If it gets incorrectly sized inputs, the `CHECK` failure can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 8741e57d163a079db05a7107a7609af70931def4. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. \"FractionalMaxPoolGrad\" comprueba sus entradas con fallos \"CHECK\" en lugar de devolver errores. Si recibe entradas de tama\u00f1o incorrecto, el fallo de \"CHECK\" puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 8741e57d163a079db05a7107a7609af70931def4 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35981",
  "lastModified": "2024-11-21T07:12:06.360",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.183",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8741e57d163a079db05a7107a7609af70931def4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vxv8-r8q2-63xw"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseFillEmptyRows` can be made to trigger a heap OOB access. This occurs whenever the size of `indices` does not match the size of `values`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseFillEmptyRows` can be made to trigger a heap OOB access. This occurs whenever the size of `indices` does not match the size of `values`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas la implementaci\u00f3n de \"SparseFillEmptyRows\" puede hacer que se desencadene un acceso OOB al heap. Esto ocurre cuando el tama\u00f1o de los \"\u00edndices\" no coincide con el tama\u00f1o de los \"values\". La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41224",
  "lastModified": "2024-11-21T06:25:49.303",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:09.263",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/67bfd9feeecfb3c61d80f0e46d89c170fbee682b"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rg3m-hqc5-344v"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. An input `sparse_matrix` that is not a matrix with a shape with rank 0 will trigger a `CHECK` fail in `tf.raw_ops.SparseMatrixNNZ`. We have patched the issue in GitHub commit f856d02e5322821aad155dad9b3acab1e9f5d693. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "793BC396-7686-47FA-A107-DA6FC90704A2",
              "versionEndExcluding": "2.10.1",
              "versionStartIncluding": "2.10.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. An input `sparse_matrix` that is not a matrix with a shape with rank 0 will trigger a `CHECK` fail in `tf.raw_ops.SparseMatrixNNZ`. We have patched the issue in GitHub commit f856d02e5322821aad155dad9b3acab1e9f5d693. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. Una entrada `sparse_matrix` que no sea una matriz con una forma con rango 0 provocar\u00e1 un error de `CHECK` en `tf.raw_ops.SparseMatrixNNZ`. Hemos solucionado el problema en el commit de GitHub f856d02e5322821aad155dad9b3acab1e9f5d693. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1, 2.9.3 y TensorFlow 2.8.4, ya que estos tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2022-41901",
  "lastModified": "2024-11-21T07:24:01.723",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:20.907",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse/sparse_matrix.h"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f856d02e5322821aad155dad9b3acab1e9f5d693"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9fm-r5mm-rf9f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sparse/sparse_matrix.h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/f856d02e5322821aad155dad9b3acab1e9f5d693"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9fm-r5mm-rf9f"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the strided slice implementation in TFLite has a logic bug which can allow an attacker to trigger an infinite loop. This arises from newly introduced support for [ellipsis in axis definition](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). An attacker can craft a model such that `ellipsis_end_idx` is smaller than `i` (e.g., always negative). In this case, the inner loop does not increase `i` and the `continue` statement causes execution to skip over the preincrement at the end of the outer loop. We have patched the issue in GitHub commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695. TensorFlow 2.6.0 is the only affected version."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n strided slice en TFLite presenta un fallo l\u00f3gico que puede permitir a un atacante desencadenar un bucle infinito. Esto se debe al soporte recientemente introducido para [ellipsis en la definici\u00f3n de ejes](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/strided_slice.cc#L103-L122). Un atacante puede dise\u00f1ar un modelo tal que \"ellipsis_end_idx\" sea menor que \"i\" (por ejemplo, siempre negativo). En este caso, el bucle interno no incrementa \"i\" y la sentencia \"continue\" hace que la ejecuci\u00f3n se salte el preincremento al final del bucle externo. Hemos parcheado el problema en el commit dfa22b348b70bb89d6d6ec0ff53973bacb4f4695 de GitHub. TensorFlow  versi\u00f3n 2.6.0 es la \u00fanica versi\u00f3n afectada."
    }
  ],
  "id": "CVE-2021-37686",
  "lastModified": "2024-11-21T06:15:42.087",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.967",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mhhc-q96p-mfm9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/dfa22b348b70bb89d6d6ec0ff53973bacb4f4695"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mhhc-q96p-mfm9"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-835"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 22:16
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93Exploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93Exploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorToCSRSparseMatrix` does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack. The code assumes `dense_shape` is a vector and `indices` is a matrix (as part of requirements for sparse tensors) but there is no validation for this. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.SparseTensorToCSRSparseMatrix\" no comprueba completamente los argumentos de entrada. Esto resulta en un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. El c\u00f3digo asume que \"dense_shape\" es un vector y que \"indices\" es una matriz (como parte de los requisitos para los tensores dispersos) pero no es comprobado esto. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29198",
  "lastModified": "2024-11-21T06:58:41.647",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T22:16:40.810",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse/sparse_tensor_to_csr_sparse_matrix_op.cc#L65-L119"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ea50a40e84f6bff15a0912728e35b657548cef11"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mg66-qvc5-rm93"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 20:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "455FB550-4C9C-4BD6-9F76-A627B62AB332",
              "versionEndExcluding": "2.4.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "035CDF63-1548-4FB4-B8A9-B8D328FAF910",
              "versionEndExcluding": "2.5.2",
              "versionStartIncluding": "2.5.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "5D68D8D1-DB27-4395-9D3D-2BED901B852C",
              "versionEndExcluding": "2.6.1",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions if `tf.tile` is called with a large input argument then the TensorFlow process will crash due to a `CHECK`-failure caused by an overflow. The number of elements in the output tensor is too much for the `int64_t` type and the overflow is detected via a `CHECK` statement. This aborts the process. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, si se llama a \"tf.tile\" con un argumento de entrada grande, el proceso de TensorFlow ser\u00e1 bloqueado debido a un fallo de \"CHECK\" causado por un desbordamiento. El n\u00famero de elementos en el tensor de salida es demasiado para el tipo \"int64_t\" y el desbordamiento es detectado por medio de una sentencia \"CHECK\". Esto aborta el proceso. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-41198",
  "lastModified": "2024-11-21T06:25:45.033",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T20:15:07.907",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46911"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/9294094df6fea79271778eb7e7ae1bad8b5ef98f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/issues/46911"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2p25-55c9-h58q"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-11-18 22:15
Modified
2024-11-21 07:24
Summary
TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.10.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "A694EEE1-BFB9-4E6C-B275-02DC2731961C",
              "versionEndExcluding": "2.8.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "9057B403-719C-4F10-BAB6-67F84786A89E",
              "versionEndExcluding": "2.9.3",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "6AE6CFC4-0232-4E1C-960D-268C87788735",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. The security vulnerability results in FractionalMax(AVG)Pool with illegal pooling_ratio. Attackers using Tensorflow can exploit the vulnerability. They can access heap memory which is not in the control of user, leading to a crash or remote code execution. We have patched the issue in GitHub commit 216525144ee7c910296f5b05d214ca1327c9ce48. The fix will be included in TensorFlow 2.11.0. We will also cherry pick this commit on TensorFlow 2.10.1."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. La vulnerabilidad de seguridad da como resultado un grupo FractionalMax(AVG) con una relaci\u00f3n de agrupaci\u00f3n ilegal. Los atacantes que utilizan Tensorflow pueden aprovechar la vulnerabilidad. Pueden acceder a la memoria del mont\u00f3n que no est\u00e1 bajo el control del usuario, lo que provoca un bloqueo o la ejecuci\u00f3n remota de c\u00f3digo. Hemos solucionado el problema en el commit de GitHub 216525144ee7c910296f5b05d214ca1327c9ce48. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1."
    }
  ],
  "id": "CVE-2022-41900",
  "lastModified": "2024-11-21T07:24:01.587",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "REQUIRED",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.2,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-11-18T22:15:20.273",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/216525144ee7c910296f5b05d214ca1327c9ce48"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvwp-h6jv-7472"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        },
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 21:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions providing a negative element to `num_elements` list argument of `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid. We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, proporcionar un elemento negativo al argumento de lista \"num_elements\" de \"tf.raw_ops.TensorListReserve\" hace que el tiempo de ejecuci\u00f3n aborte el proceso debido a la reasignaci\u00f3n de un \"std::vector\" para tener un n\u00famero negativo de elementos. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) llama a \"std::vector.resize()\" con el nuevo tama\u00f1o controlado por la entrada dada por el usuario, sin comprobar que esta entrada es v\u00e1lida. Hemos parcheado el problema en el commit 8a6e874437670045e6c7dc6154c7412b4a2135e2 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.5.1, TensorFlow 2.4.3 y TensorFlow 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37644",
  "lastModified": "2024-11-21T06:15:35.750",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T21:15:07.770",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. If the `splits` argument of `RaggedBincount` does not specify a valid `SparseTensor`(https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), then an attacker can trigger a heap buffer overflow. This will cause a read from outside the bounds of the `splits` tensor buffer in the implementation of the `RaggedBincount` op(https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op.cc#L430-L446). Before the `for` loop, `batch_idx` is set to 0. The attacker sets `splits(0)` to be 7, hence the `while` loop does not execute and `batch_idx` remains 0. This then results in writing to `out(-1, bin)`, which is before the heap allocated buffer for the output tensor. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3, as these are also affected."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Si el argumento \"splits\" de \"RaggedBincount\" no especifica un \"SparseTensor\" v\u00e1lido (https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor), entonces un atacante puede desencadenar un desbordamiento del b\u00fafer de la pila.\u0026#xa0;Esto causar\u00e1 una lectura desde fuera de l\u00edmites del b\u00fafer tensorial \"splits\" en una implementaci\u00f3n de la operaci\u00f3n \"RaggedBincount\" (https://github.com/tensorflow/tensorflow/blob/8b677d79167799f71c42fd3fa074476e0295413a/tensorflow/core/kernels/bincount_op. cc#L430-L446).\u0026#xa0;Antes del bucle \"for\", \"batch_idx\" es establecido en 0. El atacante establece \"splits (0)\" en 7, por lo tanto, el bucle \"while\" no se ejecuta y \"batch_idx\" permanece en 0. Esto resulta en una escritura en \"out (-1, bin)\", que est\u00e1 ubicado antes del b\u00fafer asignado a la pila para el tensor de salida.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0"
    }
  ],
  "id": "CVE-2021-29514",
  "lastModified": "2024-11-21T06:01:17.233",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.247",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/eebb96c2830d48597d055d247c0e9aebaea94cd5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8h46-5m9h-7553"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-05-20 23:15
Modified
2024-11-21 06:58
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.
References
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.ccThird Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730Patch, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
security-advisories@github.comhttps://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqqExploit, Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.ccThird Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730Patch, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0Release Notes, Third Party Advisory
af854a3a-2127-422b-91ae-364da2661108https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqqExploit, Patch, Third Party Advisory
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "D9359D32-D090-44CF-AC43-2046084A28BB",
              "versionEndExcluding": "2.6.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C4DFBF2D-5283-42F6-8800-D653BFA5CE82",
              "versionEndExcluding": "2.7.2",
              "versionStartIncluding": "2.7.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "A58EDA5C-66D6-46F1-962E-60AFB7C784A7",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89522760-C2DF-400D-9624-626D8F160CBA",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:-:*:*:*:*:*:*",
              "matchCriteriaId": "E9EA1898-ACAA-4699-8BAE-54D62C1819FB",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "130DE3C9-6842-456F-A259-BF8FF8457217",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.8.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "BBF2FCEF-989C-409D-9F4C-81418C65B972",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "9CFB1CFC-579D-4647-A472-6DE8BE1951DE",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.9.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "F3F3F37E-D27F-4060-830C-0AFF16150777",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, the implementation of `tf.raw_ops.SparseTensorDenseAdd` does not fully validate the input arguments. In this case, a reference gets bound to a `nullptr` during kernel execution. This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En versiones anteriores a 2.9.0, 2.8.1, 2.7.2 y 2.6.4, la implementaci\u00f3n de \"tf.raw_ops.SparseTensorDenseAdd\" no comprobaba completamente los argumentos de entrada. En este caso, una referencia es vinculada a un \"nullptr\" durante la ejecuci\u00f3n del kernel. Esto es un comportamiento no definido. Las versiones 2.9.0, 2.8.1, 2.7.2 y 2.6.4 contienen un parche para este problema"
    }
  ],
  "id": "CVE-2022-29206",
  "lastModified": "2024-11-21T06:58:42.890",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-05-20T23:15:44.887",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/sparse_tensor_dense_add_op.cc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/11ced8467eccad9c7cb94867708be8fa5c66c730"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Release Notes",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don't validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.3.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow version 2.3.0, the `SparseCountSparseOutput` and `RaggedCountSparseOutput` implementations don\u0027t validate that the `weights` tensor has the same shape as the data. The check exists for `DenseCountSparseOutput`, where both tensors are fully specified. In the sparse and ragged count weights are still accessed in parallel with the data. But, since there is no validation, a user passing fewer weights than the values for the tensors can generate a read from outside the bounds of the heap buffer allocated for the weights. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versi\u00f3n 2.3.0, las implementaciones de \"SparseCountSparseOutput\" y \"RaggedCountSparseOutput\" no comprueban que el tensor \"weights\" tenga la misma forma que los datos.\u0026#xa0;La comprobaci\u00f3n existe para \"DenseCountSparseOutput\", donde ambos tensores est\u00e1n completamente especificados.\u0026#xa0;En el recuento escaso y desigual, todav\u00eda se accede a los pesos en paralelo con los datos.\u0026#xa0;Pero, dado que no existe comprobaci\u00f3n, un usuario que pase menos pesos que valores para los tensores puede generar una lectura desde fuera de los l\u00edmites del b\u00fafer de pila asignado para los pesos.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15196",
  "lastModified": "2024-11-21T05:05:03.503",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.5,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:L/Au:S/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 6.0,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.9,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.1,
        "impactScore": 6.0,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.870",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pg59-2f92-5cph"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-119"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. Passing a complex argument to `tf.transpose` at the same time as passing `conjugate=True` argument results in a crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;al pasar un argumento complejo a \"tf.transpose\" al mismo tiempo que pasan un argumento \"conjugate=True\" resulta en un bloqueo.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29618",
  "lastModified": "2024-11-21T06:01:30.350",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:16.277",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/42105"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46973"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/42105"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Broken Link"
      ],
      "url": "https://github.com/tensorflow/issues/46973"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1dc6a7ce6e0b3e27a7ae650bfc05b195ca793f88"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xqfj-cr6q-pc8w"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-755"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.NonMaxSuppressionV5` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/image/non_max_suppression_op.cc#L170-L271) uses a user controlled argument to resize a `std::vector`. However, as `std::vector::resize` takes the size argument as a `size_t` and `output_size` is an `int`, there is an implicit conversion to unsigned. If the attacker supplies a negative value, this conversion results in a crash. A similar issue occurs in `CombinedNonMaxSuppression`. We have patched the issue in GitHub commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d and commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede causar una denegaci\u00f3n de servicio en aplicaciones que sirven modelos que usan \"tf.raw_ops.NonMaxSuppressionV5\" al activar una divisi\u00f3n por 0. La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/ tensorflow / core / kernels / image / non_max_suppression_op.cc # L170-L271) usa un argumento controlado por el usuario para cambiar el tama\u00f1o de un \"std :: vector\".\u0026#xa0;Sin embargo, como \"std :: vector :: resize\" toma el argumento de tama\u00f1o como un\" size_t\" y \"output_size\" es un\" int\", hay una conversi\u00f3n impl\u00edcita a unsigned.\u0026#xa0;Si el atacante proporciona un valor negativo, esta conversi\u00f3n resulta en un bloqueo.\u0026#xa0;Un problema similar ocurre en \"CombinedNonMaxSuppression\".\u0026#xa0;Hemos solucionado el problema en GitHub, commit 3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d y commit [b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37669",
  "lastModified": "2024-11-21T06:15:39.570",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.597",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3a7362750d5c372420aa8f0caf7bf5b5c3d0f52d"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/b5cdbf12ffcaaffecf98f22a6be5a64bb96e4f58"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vmjw-c2vp-p33c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-681"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-11-05 21:15
Modified
2024-11-21 06:25
Summary
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected.
Impacted products
Vendor Product Version
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "651EA851-E660-4E53-9F3E-B6B69D91326B",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `QuantizeV2` can trigger a read outside of bounds of heap allocated array. This occurs whenever `axis` is a negative value less than `-1`. In this case, we are accessing data before the start of a heap buffer. The code allows `axis` to be an optional argument (`s` would contain an `error::NOT_FOUND` error code). Otherwise, it assumes that `axis` is a valid index into the dimensions of the `input` tensor. If `axis` is less than `-1` then this results in a heap OOB read. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, as this version is the only one that is also affected."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas, el c\u00f3digo de inferencia de forma para \"QuantizeV2\" puede desencadenar una lectura fuera de l\u00edmites de la matriz asignada a la pila. Esto ocurre siempre que el \"eje\" es un valor negativo menor que \"1\". En este caso, estamos accediendo a los datos antes del inicio de un buffer de heap. El c\u00f3digo permite que \"axis\" sea un argumento opcional (\"s\" contendr\u00eda un c\u00f3digo de error \"error::NOT_FOUND\"). En caso contrario, asume que \"axis\" es un \u00edndice v\u00e1lido en las dimensiones del tensor \"input\". Si \"axis\" es menor que \"-1\", se produce una lectura OOB de la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n vamos a incluir este commit en TensorFlow versi\u00f3n 2.6.1, ya que esta versi\u00f3n es la \u00fanica que tambi\u00e9n est\u00e1 afectada"
    }
  ],
  "id": "CVE-2021-41211",
  "lastModified": "2024-11-21T06:25:47.220",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 3.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-11-05T21:15:08.813",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a0d64445116c43cf46a5666bd4eee28e7a82f244"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cvgx-3v3q-m36c"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes a list of strings to `dlpack.to_dlpack` there is a memory leak following an expected validation failure. The issue occurs because the `status` argument during validation failures is not properly checked. Since each of the above methods can return an error status, the `status` value must be checked before continuing. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.2.0
google tensorflow 2.3.0
opensuse leap 15.2



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.2.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "FB9BCD7D-1626-429F-B479-7D2F1E46B9C4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    },
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:o:opensuse:leap:15.2:*:*:*:*:*:*:*",
              "matchCriteriaId": "B009C22E-30A4-4288-BCF6-C3E81DEAF45A",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before versions 2.2.1 and 2.3.1, if a user passes a list of strings to `dlpack.to_dlpack` there is a memory leak following an expected validation failure. The issue occurs because the `status` argument during validation failures is not properly checked. Since each of the above methods can return an error status, the `status` value must be checked before continuing. The issue is patched in commit 22e07fb204386768e5bcbea563641ea11f96ceb8 and is released in TensorFlow versions 2.2.1, or 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow versiones anteriores a 2.2.1 y 2.3.1, si un usuario pasa una lista de cadenas hacia \"dlpack.to_dlpack\", se presenta una p\u00e9rdida de memoria despu\u00e9s de un fallo de comprobaci\u00f3n esperada.\u0026#xa0;El problema se produce porque el argumento \"status\" durante los fallos de comprobaci\u00f3n no se verifica correctamente.\u0026#xa0;Dado que cada uno de los m\u00e9todos anteriores puede devolver un estado de error, el valor de \"status\" debe comprobarse antes de continuar.\u0026#xa0;El problema es parcheado en el commit 22e07fb204386768e5bcbea563641ea11f96ceb8 y es publicado en TensorFlow versiones 2.2.1 o 2.3.1"
    }
  ],
  "id": "CVE-2020-15192",
  "lastModified": "2024-11-21T05:05:02.887",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "SINGLE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:S/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "LOW",
          "baseScore": 4.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 1.4,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:14.480",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Mailing List",
        "Third Party Advisory"
      ],
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/22e07fb204386768e5bcbea563641ea11f96ceb8"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fxw-76px-3rxv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in caused by an integer overflow in constructing a new tensor shape. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) builds a dense shape without checking that the dimensions would not result in overflow. The `TensorShape` constructor(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) uses a `CHECK` operation which triggers when `InitDims`(https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) returns a non-OK status. This is a legacy implementation of the constructor and operations should use `BuildTensorShapeBase` or `AddDimWithStatus` to prevent `CHECK`-failures in the presence of overflows. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo \"CHECK\" causada por un desbordamiento de enteros al construir una nueva forma de tensor.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/0908c2f2397c099338b901b067f6495a5b96760b/tensorflow/core/kernels/sparse_split_op.cc#L66-L70) crea una forma densa sin comprobar que las dimensiones no resulten en un desbordamiento .\u0026#xa0;El constructor \"TensorShape\" (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) usa una operaci\u00f3n \"CHECK\" que es desencadenada (https://github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L183-L188) : //github.com/tensorflow/tensorflow/blob/6f9896890c4c703ae0a0845394086e2e1e523299/tensorflow/core/framework/tensor_shape.cc#L212-L296) devuelve un estado no correcto.\u0026#xa0;Esta es una implementaci\u00f3n heredada del constructor y las operaciones deben usar \"BuildTensorShapeBase\" o \"AddDimWithStatus\" para evitar fallos de \"CHECK\" en presencia de desbordamientos.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29584",
  "lastModified": "2024-11-21T06:01:25.937",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:14.490",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/4c0ee937c0f61c4fc5f5d32d9bb4c67428012a60"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xvjm-fvxx-q3hv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in converting sparse tensors to CSR Sparse matrices. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) does a double redirection to access an element of an array allocated on the heap. If the value at `indices(i, 0)` is such that `indices(i, 0) + 1` is outside the bounds of `csr_row_ptr`, this results in writing outside of bounds of heap allocated data. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a denial of service via a `CHECK`-fail in converting sparse tensors to CSR Sparse matrices. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) does a double redirection to access an element of an array allocated on the heap. If the value at `indices(i, 0)` is such that `indices(i, 0) + 1` is outside the bounds of `csr_row_ptr`, this results in writing outside of bounds of heap allocated data. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar una denegaci\u00f3n de servicio por medio de un fallo de \"CHECK\" al convertir tensores dispersos en matrices CSR Sparse.\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/800346f2c03a27e182dd4fba48295f65e7790739/tensorflow/core/kernels/sparse/kernels.cc#L66) hace un doble redireccionamiento para acceder a un elemento de una matriz asignada en la pila.\u0026#xa0;Si el valor en \"\u00edndices(i, 0)\" es tal que \"\u00edndices(i, 0) + 1\" est\u00e1 fuera de l\u00edmites de\" csr_row_ptr\", esto resulta en una escritura fuera de l\u00edmites en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29545",
  "lastModified": "2024-11-21T06:01:21.060",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:12.667",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/1e922ccdf6bf46a3a52641f99fd47d54c1decd13"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hmg3-c7xj-6qwm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-131"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`'s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite implementation of hashtable lookup is vulnerable to a division by zero error(https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115) An attacker can craft a model such that `values`\u0027s first dimension would be 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de TFLite de b\u00fasqueda de tablas hash es vulnerable a un error de divisi\u00f3n por cero (https://github.com/tensorflow/tensorflow/blob/1a8e885b864c818198a5b2c0cbbeca5a1e833bc8/tensorflow/lite/kernels/hashtable_lookup.cc#L114-L115 craft a attacker) modelo tal que la primera dimensi\u00f3n de \"values\" ser\u00eda 0. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29604",
  "lastModified": "2024-11-21T06:01:28.497",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.620",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5117e0851348065ed59c991562c0ec80d9193db2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8rm6-75mf-7r7r"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a division by 0 in `tf.raw_ops.Conv2DBackpropFilter`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) does a modulus operation where the divisor is controlled by the caller. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede activar una divisi\u00f3n por 0 en \"tf.raw_ops.Conv2DBackpropFilter\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/496c2630e51c1a478f095b084329acedb253db6b/tensorflow/core/kernels/conv_grad_shape_utils.cc#L130) realiza una operaci\u00f3n de m\u00f3dulo donde el divisor es controlado por el llamador.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29524",
  "lastModified": "2024-11-21T06:01:18.430",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.710",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/fca9874a9b42a2134f907d2fb46ab774a831404a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-r4pj-74mg-8868"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ < -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The validation in `tf.raw_ops.QuantizeAndDequantizeV2` allows invalid values for `axis` argument:. The validation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) uses `||` to mix two different conditions. If `axis_ \u003c -1` the condition in `OP_REQUIRES` will still be true, but this value of `axis_` results in heap underflow. This allows attackers to read/write to other data on the heap. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Una comprobaci\u00f3n en la funci\u00f3n \"tf.raw_ops.QuantizeAndDequantizeV2\" permite valores no comprobados para el argumento \"axis\": La comprobaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L74-L77) usa \"||\" para mezclar dos condiciones diferentes.\u0026#xa0;Si \"axis_(-1\", la condici\u00f3n en \"OP_REQUIRES\" seguir\u00e1 siendo verdadera, pero este valor de \"axis_\" resulta en un desbordamiento de la pila.\u0026#xa0;Esto permite a los atacantes leer y escribir en otros datos de la pila.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29610",
  "lastModified": "2024-11-21T06:01:29.310",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 3.6,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.900",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/c5b0d5f8ac19888e46ca14b0e27562e7fbbee9a9"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-mq5c-prh3-3f3h"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-665"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf6b45244992e2ee543c258e519489659c99fb7f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bf6b45244992e2ee543c258e519489659c99fb7f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"AudioSummaryV2\" recibe una entrada \"sample_rate\" con m\u00e1s de un elemento, da un fallo de \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit bf6b45244992e2ee543c258e519489659c99fb7f de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35995",
  "lastModified": "2024-11-21T07:12:08.450",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.347",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-g9h5-vr8m-x2h4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-03 15:15
Modified
2025-05-05 17:17
Summary
Tensorflow is an Open Source Machine Learning Framework. ### Impact An attacker can craft a TFLite model that would trigger a division by zero in the implementation of depthwise convolutions. The parameters of the convolution can be user controlled and are also used within a division operation to determine the size of the padding that needs to be added before applying the convolution. There is no check before this division that the divisor is strictly positive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. ### Impact An attacker can craft a TFLite model that would trigger a division by zero in the implementation of depthwise convolutions. The parameters of the convolution can be user controlled and are also used within a division operation to determine the size of the padding that needs to be added before applying the convolution. There is no check before this division that the divisor is strictly positive. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un marco de aprendizaje autom\u00e1tico de c\u00f3digo abierto. ### Impacto Un atacante puede dise\u00f1ar un modelo TFLite que desencadene una divisi\u00f3n por cero en la implementaci\u00f3n de convoluciones en profundidad. Los par\u00e1metros de la convoluci\u00f3n pueden ser controlados por el usuario y tambi\u00e9n son usados dentro de una operaci\u00f3n de divisi\u00f3n para determinar el tama\u00f1o del relleno que necesita ser a\u00f1adido antes de aplicar la convoluci\u00f3n. Antes de esta divisi\u00f3n no es comprobado que el divisor sea estrictamente positivo. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.8.0. Tambi\u00e9n seleccionaremos este commit enTensorFlow versi\u00f3n 2.7.1, TensorFlow versi\u00f3n 2.6.3, y TensorFlow versi\u00f3n 2.5.3, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2022-21741",
  "lastModified": "2025-05-05T17:17:51.247",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 5.0,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 10.0,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 6.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-03T15:15:08.077",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/blob/5100e359aef5c8021f2e71c7b986420b85ce7b3d/tensorflow/lite/kernels/depthwise_conv.cc#L96"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/e5b0eec199c2d03de54fd6a7fd9275692218e2bc"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-428x-9xc2-m8mj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
      "type": "Secondary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret->size` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The TFLite code for allocating `TFLiteIntArray`s is vulnerable to an integer overflow issue(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27). An attacker can craft a model such that the `size` multiplier is so large that the return value overflows the `int` datatype and becomes negative. In turn, this results in invalid value being given to `malloc`(https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52). In this case, `ret-\u003esize` would dereference an invalid pointer. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;El c\u00f3digo TFLite para asignar \"TFLiteIntArray\" es vulnerable a un problema de desbordamiento de enteros (https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L24-L27).\u0026#xa0;Un atacante puede dise\u00f1ar un modelo tal que el multiplicador de \"size\" sea tan grande que el valor de retorno desborde el tipo de datos \"int\" y se vuelva negativo.\u0026#xa0;A su vez, esto resulta en que se le d\u00e9 un valor no v\u00e1lido a \"malloc\" (https://github.com/tensorflow/tensorflow/blob/4ceffae632721e52bf3501b736e4fe9d1221cdfa/tensorflow/lite/c/common.c#L47-L52).\u0026#xa0;En este caso, \"ret-)size\" eliminar\u00eda la referencia a un puntero no v\u00e1lido.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4"
    }
  ],
  "id": "CVE-2021-29605",
  "lastModified": "2024-11-21T06:01:28.630",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.670",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7c8cc4ec69cd348e44ad6a2699057ca88faad3e5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-jf7h-7m85-w2v2"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-190"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when the parameter `summarize` of `tf.raw_ops.Print` is zero, the new method `SummarizeArray<bool>` will reference to a nullptr, leading to a seg fault. A fix is included in TensorFlow version 2.12 and version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Prior to versions 2.12.0 and 2.11.1, when the parameter `summarize` of `tf.raw_ops.Print` is zero, the new method `SummarizeArray\u003cbool\u003e` will reference to a nullptr, leading to a seg fault. A fix is included in TensorFlow version 2.12 and version 2.11.1.\n"
    }
  ],
  "id": "CVE-2023-25660",
  "lastModified": "2024-11-21T07:49:53.440",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.200",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/6d423b8bcc9aa9f5554dc988c1c16d038b508df1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Vendor Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qjqc-vqcf-5qvj"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede leer desde fuera de l\u00edmites de los datos asignados a la pila mediante el env\u00edo de argumentos ilegales especialmente dise\u00f1ados a \"tf.raw_ops.SdcaOptimizerV2\".\u0026#xa0;La [implementaci\u00f3n] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) no comprueba que la longitud de \"example_labels\" sea la misma que el n\u00famero de ejemplos.\u0026#xa0;Hemos solucionado el problema en GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37672",
  "lastModified": "2024-11-21T06:15:39.990",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 2.1,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:N/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.787",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a4e138660270e7599793fa438cd7b2fc2ce215a6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-5hj3-vjjf-f5m7"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 23:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `TensorListFromTensor` receives an `element_shape` of a rank greater than one, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 3db59a042a38f4338aa207922fa2f476e000a6ee. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `TensorListFromTensor` receives an `element_shape` of a rank greater than one, it gives a `CHECK` fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 3db59a042a38f4338aa207922fa2f476e000a6ee. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"TensorListFromTensor\" recibe un \"element_shape\" de un rango mayor que uno, da un fallo \"CHECK\" que puede desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 3db59a042a38f4338aa207922fa2f476e000a6ee de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35992",
  "lastModified": "2024-11-21T07:12:08.033",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T23:15:10.167",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3db59a042a38f4338aa207922fa2f476e000a6ee"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9v8w-xmr4-wgxp"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 23:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause denial of service in applications serving models using `tf.raw_ops.UnravelIndex` by triggering a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36) does not check that the tensor subsumed by `dims` is not empty. Hence, if one element of `dims` is 0, the implementation does a division by 0. We have patched the issue in GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas, un atacante puede causar una denegaci\u00f3n de servicio en aplicaciones que sirven modelos que usan \"tf.raw_ops.UnravelIndex\" al activar una divisi\u00f3n por 0. La [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/unravel_index_op.cc#L36 no comprueba que el tensor subsumido por \"dims\" no est\u00e9 vac\u00edo.\u0026#xa0;Por lo tanto, si un elemento de \"dims\" es 0, la implementaci\u00f3n hace una divisi\u00f3n por 0. Hemos parcheado el problema en GitHub commit a776040a5e7ebf76eeb7eb923bf1ae417dd4d233.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido."
    }
  ],
  "id": "CVE-2021-37668",
  "lastModified": "2024-11-21T06:15:39.427",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 2.1,
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "vectorString": "AV:L/AC:L/Au:N/C:N/I:N/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 2.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 5.5,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T23:15:07.440",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a776040a5e7ebf76eeb7eb923bf1ae417dd4d233"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2wmv-37vq-52g5"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-369"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2023-03-25 00:15
Modified
2024-11-21 07:49
Summary
TensorFlow is an open source platform for machine learning. Attackers using Tensorflow prior to 2.12.0 or 2.11.1 can access heap memory which is not in the control of user, leading to a crash or remote code execution. The fix will be included in TensorFlow version 2.12.0 and will also cherrypick this commit on TensorFlow version 2.11.1.
Impacted products
Vendor Product Version
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FAC3DE54-93B4-4D6C-9648-B9D416B9770F",
              "versionEndExcluding": "2.12.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. Attackers using Tensorflow prior to 2.12.0 or 2.11.1 can access heap memory which is not in the control of user, leading to a crash or remote code execution. The fix will be included in TensorFlow version 2.12.0 and will also cherrypick this commit on TensorFlow version 2.11.1."
    }
  ],
  "id": "CVE-2023-25668",
  "lastModified": "2024-11-21T07:49:54.470",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 9.8,
          "baseSeverity": "CRITICAL",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2023-03-25T00:15:07.593",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/7b174a0f2e40ff3f3aa957aecddfd5aaae35eccb"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-gw97-ff7c-9v96"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-122"
        },
        {
          "lang": "en",
          "value": "CWE-125"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-02-04 23:15
Modified
2024-11-21 06:48
Summary
Tensorflow is an Open Source Machine Learning Framework. In multiple places, TensorFlow uses `tempfile.mktemp` to create temporary files. While this is acceptable in testing, in utilities and libraries it is dangerous as a different process can create the file between the check for the filename in `mktemp` and the actual creation of the file by a subsequent operation (a TOC/TOU type of weakness). In several instances, TensorFlow was supposed to actually create a temporary directory instead of a file. This logic bug is hidden away by the `mktemp` function usage. We have patched the issue in several commits, replacing `mktemp` with the safer `mkstemp`/`mkdtemp` functions, according to the usage pattern. Users are advised to upgrade as soon as possible.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.7.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "688150BF-477C-48FC-9AEF-A79AC57A6DDC",
              "versionEndIncluding": "2.5.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C9E69B60-8C97-47E2-9027-9598B8392E5D",
              "versionEndIncluding": "2.6.2",
              "versionStartIncluding": "2.6.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.7.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "2EDFAAB8-799C-4259-9102-944D4760DA2C",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "Tensorflow is an Open Source Machine Learning Framework. In multiple places, TensorFlow uses `tempfile.mktemp` to create temporary files. While this is acceptable in testing, in utilities and libraries it is dangerous as a different process can create the file between the check for the filename in `mktemp` and the actual creation of the file by a subsequent operation (a TOC/TOU type of weakness). In several instances, TensorFlow was supposed to actually create a temporary directory instead of a file. This logic bug is hidden away by the `mktemp` function usage. We have patched the issue in several commits, replacing `mktemp` with the safer `mkstemp`/`mkdtemp` functions, according to the usage pattern. Users are advised to upgrade as soon as possible."
    },
    {
      "lang": "es",
      "value": "Tensorflow es un Marco de Aprendizaje Autom\u00e1tico de C\u00f3digo Abierto. En varios lugares, TensorFlow usa \"tempfile.mktemp\" para crear archivos temporales. Mientras que esto es aceptable en las pruebas, en las utilidades y bibliotecas es peligroso ya que un proceso diferente puede crear el archivo entre la comprobaci\u00f3n del nombre del archivo en \"mktemp\" y la creaci\u00f3n real del archivo por una operaci\u00f3n posterior (una debilidad del tipo TOC/TOU). En varios casos, se supone que TensorFlow deber\u00eda crear un directorio temporal en lugar de un archivo. Este error l\u00f3gico est\u00e1 oculto por el uso de la funci\u00f3n \"mktemp\". Hemos parcheado el problema en varios commits, sustituyendo \"mktemp\" por las funciones m\u00e1s seguras \"mkstemp\"/\"mkdtemp\", de acuerdo con el patr\u00f3n de uso. Se recomienda a usuarios que actualicen lo antes posible"
    }
  ],
  "id": "CVE-2022-23563",
  "lastModified": "2024-11-21T06:48:49.283",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "LOW",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "NONE",
          "baseScore": 3.3,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:M/Au:N/C:P/I:P/A:N",
          "version": "2.0"
        },
        "exploitabilityScore": 3.4,
        "impactScore": 4.9,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 7.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.2,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "NONE",
          "baseScore": 6.3,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 5.2,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-02-04T23:15:13.897",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wc4g-r73w-x8mm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-367"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-367"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-08-12 22:15
Modified
2024-11-21 06:15
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *
google tensorflow 2.5.0
google tensorflow 2.6.0
google tensorflow 2.6.0
google tensorflow 2.6.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83C081-51CC-415F-A8C0-0A44C75E2CD6",
              "versionEndExcluding": "2.3.4",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A",
              "versionEndExcluding": "2.4.3",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*",
              "matchCriteriaId": "D03E99A7-4E3D-427D-A156-C0713E9FB02A",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "70FA6E48-6C57-40CA-809F-4E3D07CBF348",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "42187561-E491-434D-828C-F36701446634",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "C66B61C8-450A-4C5E-9174-F970D6DEE778",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.BoostedTreesCreateEnsemble` can result in a use after free error if an attacker supplies specially crafted arguments. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) uses a reference counted resource and decrements the refcount if the initialization fails, as it should. However, when the code was written, the resource was represented as a naked pointer but later refactoring has changed it to be a smart pointer. Thus, when the pointer leaves the scope, a subsequent `free`-ing of the resource occurs, but this fails to take into account that the refcount has already reached 0, thus the resource has been already freed. During this double-free process, members of the resource object are accessed for cleanup but they are invalid as the entire resource has been freed. We have patched the issue in GitHub commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico. En las versiones afectadas, la implementaci\u00f3n  \"tf.raw_ops.BoostedTreesCreateEnsemble\" puede dar lugar a un error de uso de memoria previamente liberada si un atacante suministra argumentos especialmente dise\u00f1ados. La [implementaci\u00f3n](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/boosted_trees/resource_ops.cc#L55) usa un recurso contado por referencias y decrementa el refcount si ocurre un fallo en la inicializaci\u00f3n, como deber\u00eda. Sin embargo, cuando se escribi\u00f3 el c\u00f3digo, el recurso se representaba como un puntero desnudo, pero la refactorizaci\u00f3n posterior lo ha cambiado a un puntero inteligente. As\u00ed, cuando el puntero abandona el \u00e1mbito, se produce una \"liberaci\u00f3n\" posterior del recurso, pero \u00e9sta no presenta en cuenta que el refcount ya ha llegado a 0, por lo que el recurso ya ha sido liberado. Durante este proceso de doble liberaci\u00f3n, se accede a los miembros del objeto recurso para su limpieza, pero no son v\u00e1lidos ya que todo el recurso ha sido liberado. Hemos parcheado el problema en el commit 5ecec9c6fbdbc6be03295685190a45e7eee726ab de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0. Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3, y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango de soporte."
    }
  ],
  "id": "CVE-2021-37652",
  "lastModified": "2024-11-21T06:15:37.047",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-08-12T22:15:08.130",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/5ecec9c6fbdbc6be03295685190a45e7eee726ab"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m7fm-4jfh-jrg6"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-416"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-415"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2022-09-16 22:15
Modified
2024-11-21 07:12
Summary
TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "C6622D95-1C86-45C5-AB55-E6EEEA0996DF",
              "versionEndExcluding": "2.7.2",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F9D273D-02DC-441E-AA91-EAC8DEAA4B44",
              "versionEndExcluding": "2.8.1",
              "versionStartIncluding": "2.8.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "FE4F8A81-6CC2-4F7F-9602-C170FDD926E7",
              "versionEndExcluding": "2.9.1",
              "versionStartIncluding": "2.9.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*",
              "matchCriteriaId": "1DBFBCE2-0A01-4575-BE45-6775ABFB8B28",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*",
              "matchCriteriaId": "89806CF9-E423-4CA6-A01A-8175C260CB24",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*",
              "matchCriteriaId": "F2B80690-A257-4E16-BD27-9AE045BC56ED",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*",
              "matchCriteriaId": "F335F9A4-5AB8-4E53-BC18-E01F7C653E5E",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an open source platform for machine learning. When `MaxPool` receives a window size input array `ksize` with dimensions greater than its input tensor `input`, the GPU kernel gives a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Cuando \"MaxPool\" recibe una matriz de entrada de tama\u00f1o de ventana \"ksize\" con dimensiones mayores que su tensor de entrada \"input\", el kernel de la GPU da un fallo \"CHECK\" que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit 32d7bd3defd134f21a4e344c8dfd40099aaf6b18 de GitHub. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema"
    }
  ],
  "id": "CVE-2022-35989",
  "lastModified": "2024-11-21T07:12:07.570",
  "metrics": {
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 5.9,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 3.6,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 7.5,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 3.6,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2022-09-16T22:15:11.667",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/32d7bd3defd134f21a4e344c8dfd40099aaf6b18"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-j43h-pgmg-5hjq"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-617"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `MatrixDiag*` operations(https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) does not validate that the tensor arguments are non-empty. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de las operaciones de \"MatrixDiag*\" ((https://github.com/tensorflow/tensorflow/blob/4c4f420e68f1cfaf8f4b6e8e3eb857e9e4c3ff33/tensorflow/core/kernels/linalg/matrix_diag_op.cc#L195-L197) no comprueba que los argumentos del tensor no est\u00e1n vac\u00edos.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido"
    }
  ],
  "id": "CVE-2021-29515",
  "lastModified": "2024-11-21T06:01:17.353",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 2.5,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "NONE",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 1.4,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:11.300",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/a7116dd3913c4a4afd2a3a938573aa7c785fdfc6"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hc6c-75p4-hmq4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-476"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1.
Impacted products
Vendor Product Version
google tensorflow 2.3.0



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:2.3.0:*:*:*:-:*:*:*",
              "matchCriteriaId": "D0A7B69E-9388-48F0-B744-49453EBAF5D5",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` implementation does not validate that the input arguments form a valid ragged tensor. In particular, there is no validation that the values in the `splits` tensor generate a valid partitioning of the `values` tensor. Hence, the code is prone to heap buffer overflow. If `split_values` does not end with a value at least `num_values` then the `while` loop condition will trigger a read outside of the bounds of `split_values` once `batch_idx` grows too large. The issue is patched in commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 and is released in TensorFlow version 2.3.1."
    },
    {
      "lang": "es",
      "value": "En Tensorflow anteriores a la versi\u00f3n 2.3.1, la implementaci\u00f3n de \"RaggedCountSparseOutput\" no comprueba que los argumentos de entrada formen un tensor irregular v\u00e1lido.\u0026#xa0;En particular, no existe comprobaci\u00f3n de que los valores en el tensor \"splits\" generen una partici\u00f3n v\u00e1lida del tensor \"values\".\u0026#xa0;Por lo tanto, el c\u00f3digo es propenso a un desbordamiento del b\u00fafer de la pila.\u0026#xa0;Si \"split_values\" no termina con un valor de al menos \"num_values\", entonces la condici\u00f3n de bucle \"while\" activar\u00e1 una lectura fuera de los l\u00edmites de \"split_values\" una vez que \"batch_idx\" se incremente demasiado.\u0026#xa0;El problema es parcheado en el commit 3cbb917b4714766030b28eba9fb41bb97ce9ee02 y es publicado en TensorFlow versi\u00f3n 2.3.1"
    }
  ],
  "id": "CVE-2020-15201",
  "lastModified": "2024-11-21T05:05:04.303",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "NONE",
          "baseScore": 4.8,
          "baseSeverity": "MEDIUM",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 2.5,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:15.353",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/3cbb917b4714766030b28eba9fb41bb97ce9ee02"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p5f8-gfw5-33w4"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-20"
        },
        {
          "lang": "en",
          "value": "CWE-122"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2020-09-25 19:15
Modified
2024-11-21 05:05
Summary
In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code.
Impacted products
Vendor Product Version
google tensorflow *
google tensorflow *



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "323B716A-E8F7-4CDA-B8FD-A56977D59C02",
              "versionEndExcluding": "2.2.1",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:lite:*:*:*",
              "matchCriteriaId": "C09502A8-B667-4867-BEBD-40333E98A601",
              "versionEndExcluding": "2.3.1",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "In TensorFlow Lite before versions 2.2.1 and 2.3.1, models using segment sum can trigger a write out bounds / segmentation fault if the segment ids are not sorted. Code assumes that the segment ids are in increasing order, using the last element of the tensor holding them to determine the dimensionality of output tensor. This results in allocating insufficient memory for the output tensor and in a write outside the bounds of the output array. This usually results in a segmentation fault, but depending on runtime conditions it can provide for a write gadget to be used in future memory corruption-based exploits. The issue is patched in commit 204945b19e44b57906c9344c0d00120eeeae178a and is released in TensorFlow versions 2.2.1, or 2.3.1. A potential workaround would be to add a custom `Verifier` to the model loading code to ensure that the segment ids are sorted, although this only handles the case when the segment ids are stored statically in the model. A similar validation could be done if the segment ids are generated at runtime between inference steps. If the segment ids are generated as outputs of a tensor during inference steps, then there are no possible workaround and users are advised to upgrade to patched code."
    },
    {
      "lang": "es",
      "value": "En TensorFlow Lite versiones anteriores a 2.2.1 y 2.3.1, los modelos que utilizan la suma de segmentos pueden desencadenar un fallo de segmentaci\u00f3n y una escritura fuera de l\u00edmites si los ids de segmento no est\u00e1n ordenados. El c\u00f3digo asume que los ids de segmento est\u00e1n en orden creciente, usando el \u00faltimo elemento del tensor que los conserva para determinar la dimensionalidad del tensor de salida. Esto resulta en una asignaci\u00f3n de memoria insuficiente para el tensor de salida y una escritura fuera de l\u00edmites de la matriz de salida. Esto usualmente, resulta en un fallo de segmentaci\u00f3n, pero dependiendo de las condiciones del tiempo de ejecuci\u00f3n, puede proporcionar un gadget de escritura que se usar\u00e1 en futuras explotaciones basadas ??en una corrupci\u00f3n de la memoria. El problema es parcheado en el commit 204945b19e44b57906c9344c0d00120eeeae178a y es publicado en TensorFlow versiones 2.2.1 o 2.3.1. Una soluci\u00f3n alternativa potencial ser\u00eda agregar un \"Verifier\" personalizado al c\u00f3digo de carga del modelo para asegurar que los ids de segmento est\u00e9n ordenados, aunque esto solo maneja el caso cuando los ids de segmento son almacenados est\u00e1ticamente en el modelo. Una comprobaci\u00f3n similar podr\u00eda ser realizada si los ids de segmento se generan en el tiempo de ejecuci\u00f3n entre los pasos de inferencia. Si los ids de segmento son generados como salidas de un tensor durante los pasos de inferencia, entonces no existe una posible soluci\u00f3n alternativa y se recomienda a los usuarios actualizar al c\u00f3digo parcheado"
    }
  ],
  "id": "CVE-2020-15214",
  "lastModified": "2024-11-21T05:05:06.337",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "MEDIUM",
          "accessVector": "NETWORK",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 6.8,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:N/AC:M/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 8.6,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.3,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "NETWORK",
          "availabilityImpact": "HIGH",
          "baseScore": 8.1,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "LOW",
          "integrityImpact": "LOW",
          "privilegesRequired": "NONE",
          "scope": "CHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 2.2,
        "impactScore": 5.3,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2020-09-25T19:15:16.713",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/204945b19e44b57906c9344c0d00120eeeae178a"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-p2cq-cprg-frvm"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Primary"
    }
  ]
}

Vulnerability from fkie_nvd
Published
2021-05-14 20:15
Modified
2024-11-21 06:01
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx->status()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx->status()` before continuing. This doesn't happen in this op's implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Impacted products



{
  "configurations": [
    {
      "nodes": [
        {
          "cpeMatch": [
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "323ABCCE-24EB-47CC-87F6-48C101477587",
              "versionEndExcluding": "2.1.4",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "64ABA90C-0649-4BB0-89C9-83C14BBDCC0F",
              "versionEndExcluding": "2.2.3",
              "versionStartIncluding": "2.2.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9",
              "versionEndExcluding": "2.3.3",
              "versionStartIncluding": "2.3.0",
              "vulnerable": true
            },
            {
              "criteria": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*",
              "matchCriteriaId": "8259531B-A8AC-4F8B-B60F-B69DE4767C03",
              "versionEndExcluding": "2.4.2",
              "versionStartIncluding": "2.4.0",
              "vulnerable": true
            }
          ],
          "negate": false,
          "operator": "OR"
        }
      ]
    }
  ],
  "cveTags": [],
  "descriptions": [
    {
      "lang": "en",
      "value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger a heap buffer overflow in Eigen implementation of `tf.raw_ops.BandedTriangularSolve`. The implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) calls `ValidateInputTensors` for input validation but fails to validate that the two tensors are not empty. Furthermore, since `OP_REQUIRES` macro only stops execution of current function after setting `ctx-\u003estatus()` to a non-OK value, callers of helper functions that use `OP_REQUIRES` must check value of `ctx-\u003estatus()` before continuing. This doesn\u0027t happen in this op\u0027s implementation(https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), hence the validation that is present is also not effective. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
    },
    {
      "lang": "es",
      "value": "TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede desencadenar un desbordamiento del b\u00fafer en una implementaci\u00f3n de Eigen de \"tf.raw_ops.BandedTriangularSolve\".\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L269-L278) llama a \"ValidateInputTensors\" no est\u00e1n vac\u00edas.\u0026#xa0;Adem\u00e1s, dado que la macro \"OP_REQUIRES\" solo detiene una ejecuci\u00f3n de la funci\u00f3n actual despu\u00e9s de configurar la funci\u00f3n \"ctx-)status()\" a un valor que no es OK, los llamadores de funciones auxiliares que usan \"OP_REQUIRES\" deben comprobar el valor de \"ctx-)status()\" antes de continuar.\u0026#xa0;Esto no sucede en una implementaci\u00f3n de esta operaci\u00f3n (https://github.\u0026#xa0;com/tensorflow/tensorflow/blob/eccb7ec454e6617738554a255d77f08e60ee0808/tensorflow/core/kernels/linalg/banded_triangular_solve_op.cc#L219), por lo tanto, Una comprobaci\u00f3n que est\u00e1 presente tampoco es efectiva.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible"
    }
  ],
  "id": "CVE-2021-29612",
  "lastModified": "2024-11-21T06:01:29.567",
  "metrics": {
    "cvssMetricV2": [
      {
        "acInsufInfo": false,
        "baseSeverity": "MEDIUM",
        "cvssData": {
          "accessComplexity": "LOW",
          "accessVector": "LOCAL",
          "authentication": "NONE",
          "availabilityImpact": "PARTIAL",
          "baseScore": 4.6,
          "confidentialityImpact": "PARTIAL",
          "integrityImpact": "PARTIAL",
          "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P",
          "version": "2.0"
        },
        "exploitabilityScore": 3.9,
        "impactScore": 6.4,
        "obtainAllPrivilege": false,
        "obtainOtherPrivilege": false,
        "obtainUserPrivilege": false,
        "source": "nvd@nist.gov",
        "type": "Primary",
        "userInteractionRequired": false
      }
    ],
    "cvssMetricV31": [
      {
        "cvssData": {
          "attackComplexity": "HIGH",
          "attackVector": "LOCAL",
          "availabilityImpact": "LOW",
          "baseScore": 3.6,
          "baseSeverity": "LOW",
          "confidentialityImpact": "NONE",
          "integrityImpact": "LOW",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:L/A:L",
          "version": "3.1"
        },
        "exploitabilityScore": 1.0,
        "impactScore": 2.5,
        "source": "security-advisories@github.com",
        "type": "Secondary"
      },
      {
        "cvssData": {
          "attackComplexity": "LOW",
          "attackVector": "LOCAL",
          "availabilityImpact": "HIGH",
          "baseScore": 7.8,
          "baseSeverity": "HIGH",
          "confidentialityImpact": "HIGH",
          "integrityImpact": "HIGH",
          "privilegesRequired": "LOW",
          "scope": "UNCHANGED",
          "userInteraction": "NONE",
          "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
          "version": "3.1"
        },
        "exploitabilityScore": 1.8,
        "impactScore": 5.9,
        "source": "nvd@nist.gov",
        "type": "Primary"
      }
    ]
  },
  "published": "2021-05-14T20:15:15.990",
  "references": [
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
    },
    {
      "source": "security-advisories@github.com",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/0ab290774f91a23bebe30a358fde4e53ab4876a0"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/commit/ba6822bd7b7324ba201a28b2f278c29a98edbef2"
    },
    {
      "source": "af854a3a-2127-422b-91ae-364da2661108",
      "tags": [
        "Exploit",
        "Patch",
        "Third Party Advisory"
      ],
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-2xgj-xhgf-ggjv"
    }
  ],
  "sourceIdentifier": "security-advisories@github.com",
  "vulnStatus": "Modified",
  "weaknesses": [
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-120"
        }
      ],
      "source": "security-advisories@github.com",
      "type": "Secondary"
    },
    {
      "description": [
        {
          "lang": "en",
          "value": "CWE-787"
        }
      ],
      "source": "nvd@nist.gov",
      "type": "Primary"
    }
  ]
}